
Arkansas-Oklahoma Arkansas River Compact Commission Environmental Committee Report

September 28, 2023

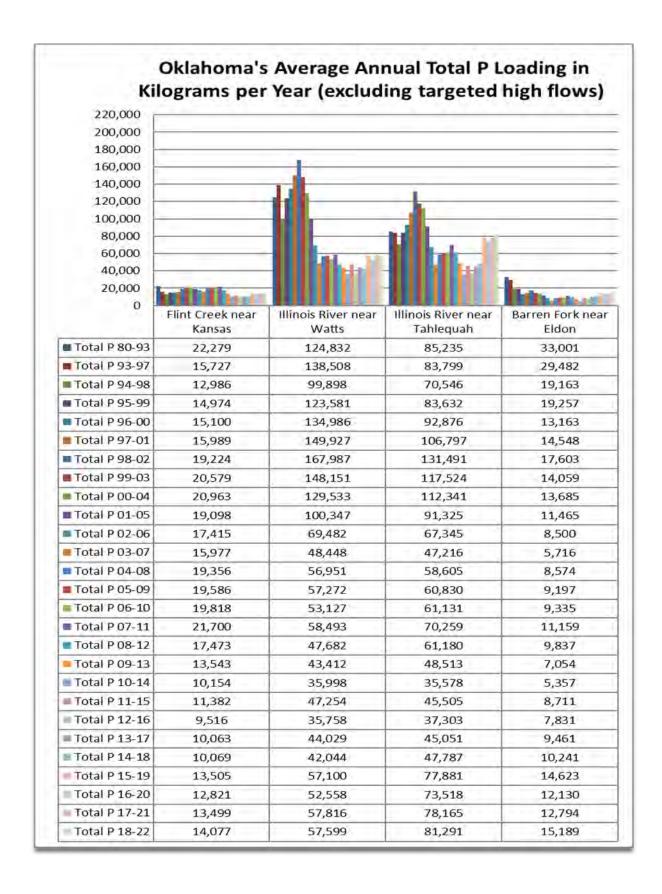
INTRODUCTION

This document is a compilation of data that has been collected within the Arkansas/Oklahoma Arkansas River Compact area. Items included for review.

Introduction
Water Quality Trends at Different Flow Regimes
OWRB Beneficial Use Monitoring Program - Streams/Rivers
OWRB Beneficial Use Monitoring Program – Lakes/Reservoirs
Compact Waters included in the Oklahoma Water Quality Integrated Report – 303(d)
Oklahoma Water Resources Board Program Updates Relevant to the Arkansas-Oklahoma Compact Commission Area
TMDL's Completed in the Compact Area
Oklahoma's Phosphorus Loading Report for the Illinois River Basin
Funding Provided by OWRB's Financial Assistance Program
Permits Issued for Water Rights in the Illinois River Watershed
Oklahoma Conservation Commission Efforts in the Illinois River Watershed

Table 1. Comparison of geometric means to the Oklahoma Scenic River total phosphorus criterion calculated from $1999-2022^1$ and 2018-2022.

	1999	-2022 (3-	month GM'S)	2018-2022 (3-month GM'S)				
Station (see footnotes)	N (Period)	N< 0.037	% Exceeding 0.037	N (Period)	N< 0.037	% Exceeding 0.037		
Illinois River near Watts²	374	11	97%	66	1	98%		
Illinois River near Tahlequah²	379	24	94%	71	4	94%		
Flint Creek near Kansas²	367	0	100%	68	0	100%		
Barren Fork near Eldon²	368	210	43%	69	39	43%		
Little Lee Creek near Nicut ¹	129	127	2%	34	34	0%		
Lee Creek near Short	246	244	1%	35	34	3%		
Mountain Fork River near Smithville	219	186	15%	41	37	10%		


Table 2. Waters Listed on Oklahoma's 2022 303(d) List

Impaired Waters in the Illinois River Basin

OKWBID	Name	Listed on 303(d) for Impairments
121700020020	Tenkiller Ferry Lake	Dissolved Oxygen, TP
121700020110	Chicken Creek	Fish Bioassessment
121700020220	Tenkiller Ferry Lake, Illinois River Arm	Chlorophyll-a, TP
121700030010	Illinois River – Tahlequah	TP, Enterococcus
121700030040	Tahlequah Creek (Town Branch)	Eschericia coli
121700030080	Illinois River	TP, Lead, Eschericia coli,
121700030280	Illinois River – Chewey Bridge	TP, Escherichia coli. Turbidity, Enterococcus
121700030290	Flint Creek	TP, Dissolved Oxygen
121700030350	Illinois River – Watts	TP, Enterococcus, Escherichia coli
121700030370	Ballard Creek	Enterococcus
121700040010	Caney Creek	Enterococcus
121700050010	Illinois River - Baron Fork	TP, Enterococcus
121700050090	Tyner Creek	Enterococcus
121700050120	Peacheater Creek	Enterococcus
121700060010	Flint Creek	TP, Enterococcus
121700060040	Battle Creek (Battle Branch)	Enterococcus
121700060080	Sager Creek	DO, Sedimentation/Siltation, Enterococcus, Macro

Other Notable Impaired Waters in the Compact Area

OKWBID	Name	Listed on 303(d) for Impairments				
220100010010	Poteau River (Below Wister)	Silver, Cadmium, Copper, Lead, Selenium, Turbidity				
220100010010	roceda River (Below Wister)	Chlorophyll-a, pH, Dissolved Oxygen,				
		Turbidity TP,				
220100020020	Wister Lake	listed as an NLW in the OWQS				
220200050010	Lee Creek	Lead, Enterococcus				
220200050040	Little Lee Creek	Lead				

Water Quality Trends at Different Flow Regimes

Trend analyses were performed on total phosphorus concentrations as well as assessment arithmetic means at four BUMP permanent monitoring stations in the Arkansas River Compact area (Table 1). Using a Seasonal Kendall test, a series of trends were calculated for each station including all total phosphorus data from both 1993-2022 and 1999-2022, total phosphorus concentrations measured at both higher and lower flows from 1999-2022 and use assessment arithmetic means from 1999-2022. Furthermore, for each concentration data set, a trend was calculated using both unadjusted and flow-adjusted total phosphorus data. Graphical representations of these trends are not presented but may be obtained by contacting Monty Porter with the OWRB at 405-530-8933. Some general conclusions may be drawn from the data set.

- 1. When considering all total phosphorus data with a period of record (POR) beginning in 1993, no station demonstrated a significant upward trend regardless of flow adjusting data. The Barren Fork River demonstrated a slight to moderate significant downward trend for all data, while all other sites and unadjusted Barren Fork data show a highly significant downward trend.
- When all data from 1999-2022 are analyzed, all stations demonstrate a highly significant downward trend, except Barren Fork adjusted data which showed no significant trend for unadjusted data.
- 3. When only lower flow data from 1999-2022 are analyzed, all waterbodies show a highly significant downward for total phosphorus concentrations, except the Barren Fork. The Barren Fork shows no significant trend.
- 4. When only lower flow data from 1999-2022 are analyzed, all stations demonstrate a highly significant downward trend. The unadjusted Barren Fork River data shows no significant trend in total phosphorus concentrations at lower flows, while its flow adjusted data demonstrate a slightly significant downward trend.
- 5. With the exception of the Barren Fork River, all stations show a highly significant downward trend for use assessment 6-month rolling arithmetic means. The Barren demonstrates no significant trend. (Figures 1-4)

Table 1. Trends calculated for total phosphorus concentrations and use assessment arithmetic means at certain BUMP permanent monitoring stations in the Compact area. (Boxes shaded in yellow represent changes from the 2022 report, and 2022 results are in superscript.)

	All Data (1993- 2022)		All Data (1999- 2022)		Data	er Flow a (1999- 022)		Flow Data 9-2022)	Arithmetic Mean For Assessment (1999-2022)	
Station	Unadj	Flow Adj	Unadj	Flow Adj	Unadj	Flow Adj	Unadj	Flow Adj	Unadj	
Illinois River near Watts	$\downarrow\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	
Illinois River near Tahlequah	$\downarrow\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	$\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	
Flint Creek near Kansas	$\downarrow\downarrow\downarrow$	$\downarrow \downarrow \downarrow$	$\downarrow \downarrow \downarrow$	$\downarrow \downarrow \downarrow$	$\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	
Barren Fork near Eldon	$\uparrow_{(\uparrow \uparrow \uparrow)}$	↓ ↓(NT)	NT ^(↓↓)	↓ ↓↓(NT)	NT ^(↓)	NT ^(↓)	$NT^{(\downarrow\downarrow)}$	↓ ^(NT)	$NT^{(\downarrow\downarrow\downarrow)}$	

No Increasing Trends

NT = No Signficant Trend

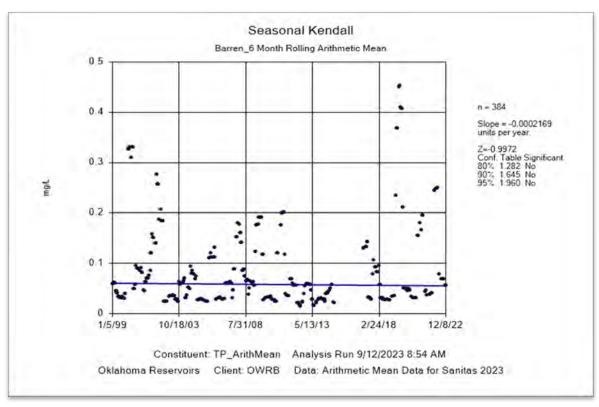


Figure 1. Trend for use assessment arithmetic means (1999-2022) on the Barren Fork River near Eldon.

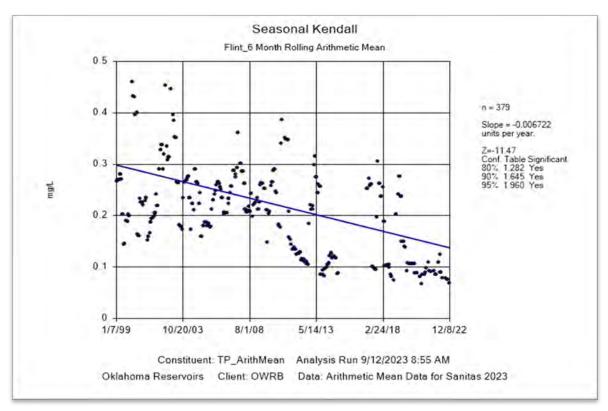


Figure 2. Trend for use assessment arithmetic means (1999-2022) on Flint Creek near Kansas.

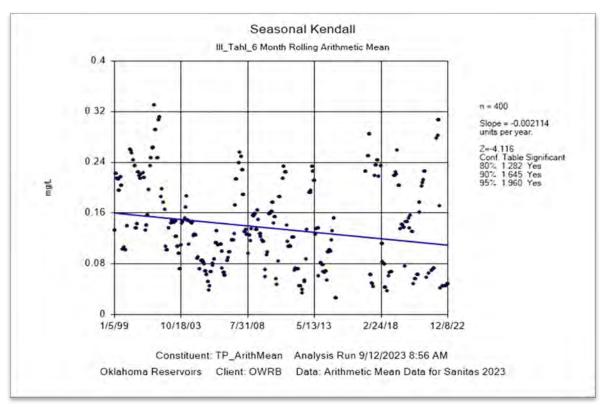


Figure 3. Trend for use assessment arithmetic means (1999-2022) on Illinois River near Tahlequah.

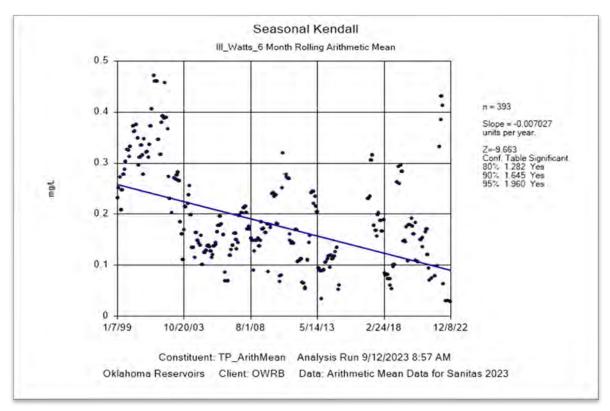


Figure 4. Trend for use assessment arithmetic means (1999-2022) on Illinois River near Watts.

Arkansas River at Moffett

Sample Record	Biological Collections	Station ID
November 1998 - Current	Gaging Data	220200010010-001AT

County	Sequoyah	Request Data By Email					
Location	East of the Town of Moffett on US Highway 64						
Latitude/Longitude	35.39242903, -94.43267795						
Planning Watershed	Lower Arkansas (8-	digit HUC - 11110104)					

		Parameter (Description	<u>s</u>)	n	Mean	Median	М	in./Ma	ìΧ	p25/p7	5	Com	ments	
		, ,		79	19.2	20.1		1.7/32.6		12.7/26.	3			
	這			80	33	21		7/194		15/42				
	In-Situ	pH (units)		79	7.85	7.85	6	.87/8.97	,	7.64/8.0	4			
		Dissolved Oxygen (mg/L)		78	9.48	9.09	5.	35/16.4	8	7.67/10.5	54			
		Hardness (mg/L)		79	162	141		39/658		125/182	2			
w		Total Dissolved Solids (mg/L)		107	357	341		<10/833		257/423	3			
Parameters	rals	Specific Conductivity (uS/cm)		77	612	576	1	95/1333	3	482/737	7			
ram	Minerals	Chloride (mg/L)		85	100	93		13/293		57/129				
Ба		Sulfate (mg/L)		85	54	51		22/116		39/64				
		Total Phosphorus (mg/L)		85	0.123	0.117	0.0	051/0.33	80	0.095/0.1	39			
	Nutrients	Total Nitrogen (mg/L)		84	0.96	0.92	0.45/2.82		0.71/1.1	2				
	Nutr	Nitrate/Nitrite (mg/L)		43	0.26	0.22	<(0.05/0.6	0.10/0.38		8			
		Chlorophyll A (mg/m³)		44	13.0	10.2	<	0.1/71.8	3	6.4/15.6		l=55.7		
	eria	Enterococcus (cfu/100ml)(*-Geo	o. Mn.)	21	1089	<10	<10/12000 <10/20		<10/20					
	Bacteria	E. Coli (cfu/100ml)(*-Geo. Mn.)		21	158	<10	<	10/2035	5	<10/20				
		sk to learn more about neficial Uses	Turbidity	Hd	Dissolved Oxygen	Metals	Sulfates	Nitrates	Chlorides	Total Dissolved Solids	Bacteria	Bio. Fish	Bio. BMI	Sediment
S	Fish	n & Wildlife Propagation	S	S	S	S						U	S	S
Uses	Aes	thetics												S
cial	Agriculture					S		5	SS					
Benefici	Primary Body Contact Recreation									S				
Be					S		S			S				
		n Consumption				S								
	S = Fully Supporting NS = Not Supporting NEI = Not Enough Information U = Assessment yielded undetermined supporting status													

Arkansas River at Muskogee

Sample Record	Biological Collections	Station ID
November 1998 - Current	Gaging Data	120400010260-001AT

County	Muskogee	Request Data By Email						
Location	East of the Town of Muskogee on US Highway 62							
Latitude/Longitude	35.77016066, -95.3	35.77016066, -95.30031102						
Planning Watershed	Middle Arkansas (8-digit HUC - 11110102)							

		Parameter (<u>Description</u>	s)	n	Mean	Median	М	in./Ma	ΙX	p25/p7	5	Com	iments	
		Water Temperature (°C)		111	18.0	18.6		1.9/32.4		11.2/24.8	3			
	真	Turbidity (NTU)		110	42	23		5/387		15/40				
	In-Situ	pH (units)		110	8.04	8.04	7	.09/9.48		7.77/8.30)			
		Dissolved Oxygen (mg/L)		115	8.99	8.95	4.	42/14.88	3	7.48/10.5	9			
		Hardness (mg/L)		109	179	167		91/399		143/211				
10		Total Dissolved Solids (mg/L)		169	500	407	<	10/1580	,	301/647				
Parameters	rals	Specific Conductivity (uS/cm)		110	859	765	1	91/2462		460/1083	3			
ram	Minerals	Chloride (mg/L)		116	160	133		<10/713		77/196				
Ра		Sulfate (mg/L)		117	73	65		28/202		45/88				
		Total Phosphorus (mg/L)		117	0.165	0.146	0.0	053/0.70	5	0.117/0.17	7			
	Nutrients	Total Nitrogen (mg/L)		116	1.15	1.10	0	.40/2.82		0.92/1.36	3			
	Nutr	Nitrate/Nitrite (mg/L)		62	0.37	0.32	<0.05/0.88		3	0.20/0.51				
		Chlorophyll A (mg/m³)		58	17.9	13.7	<	0.1/90.0		7.9/25.1	TSI	=58.9		
	Bacteria	Enterococcus (cfu/100ml)(*-Ge	o. Mn.)	20	5232	17	<′	10/75000	0	<10/200				
	Bac	E. Coli (cfu/100ml)(*-Geo. Mn.)		20	546	25	<10/5492			<10/65				
	0"		≥		eq (Ø		es	pa	a	Ę	=	ant
		k to learn more about peficial Uses	Turbidity	핊	Dissolved Oxygen	Metals	Sulfates	Nitrates	Chlorides	Total Dissolved Solids	Bacteria	Bio. Fish	Bio. BMI	Sediment
ဟ	Fish	n & Wildlife Propagation	S	S	S	S						S	S	S
cial Uses	Aes	thetics												S
ial	Agriculture					S		S	S S					
	Primary Body Contact Recreation									S				
Benefi	Public & Private Water Supply				S		S			S				
	Fish Consumption				S									
		S = Fully Supporting NS = Not Supporting NEI = Not Enough Information												

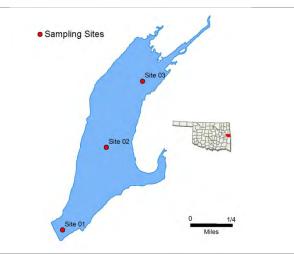
Barren Fork at Eldon

	Sample Record	Biological Collection	ns Station ID		
	November 1998 - Current	Gaging Data	121700050010-001AT		
ta	County	Cherokee	Request Data By Email		
Data	Location	South of the Town of E	ildon on State Highway 51		
Stream	Latitude/Longitude	35.92173377, -94.8372	26494		
Stre	Planning Watershed	Lower Arkansas (8-dig	it HUC - 11110103)		

		Parameter (<u>Descriptions</u>)	n	Mea	ın l	Median	Min.	/Max	p25	5/p75		С	omme	ents	
		Water Temperature (°C)	145	17.3	3	17.8	3.1/	29.9	11.	3/22.9					
	夏	Turbidity (NTU)	142	4		2	1/45			2/3					
	In-Situ	pH (units)	144	7.63	3	7.59	6.37	/8.82	7.3	7/7.88					
		Dissolved Oxygen (mg/L)	148	9.67	7	9.80	4.40/	14.53	8.19	9/11.05					
		Hardness (mg/L)	146	99		98	46/159		89	9/107					
40	rals	Total Dissolved Solids (mg/L)	164	128	3	124	13/	545	11	0/137					
eters		Specific Conductivity (uS/cm)	145	200)	199	20/	713	17	8/215					
Parameters	Minerals	Chloride (mg/L)	117	<10)	<10	<10)/44	<1	0/<10					
Pa	_	Sulfate (mg/L)	117	<10)	<10	<10	0/40	<1	0/<10					
		Total Phosphorus (mg/L)	149	0.03	3	0.028	<0.010	0/0.217	0.02	2/0.034					
	Nutrients	Total Nitrogen (mg/L)	148	1.48	3	1.39	0.18	/4.20	0.8	5/1.94					
		Nitrate/Nitrite (mg/L)	86	1.26	3	1.18	0.14	/3.83	0.6	3/1.64					
		Chlorophyll A (mg/m³)		1.4		1.1	<0.1	/11.7	0.	7/1.7	TSI=	=34.1			
	eria	Enterococcus (cfu/100ml)(*-Geo. Mn.)	74	221		20	<10/	3900	<1	10/80					
	Bacteria	E. Coli (cfu/100ml)(*-Geo. Mn.)		77		<10	<10/2420 <10/49		10/49	Mean>OWQS					
		,													
		to learn more about eficial Uses	Turbidity	Hd	Dissolved	Metals	Sulfates	Nitrates	Chlorides	Total Dissolved Solids	Bacteria	Bio. Fish	Bio. BMI	Sediment	Total Phosphorus
ses	Fish	& Wildlife Propagation	S	S	S		O)			F G 0	ш	S	S	S	
al Uses	Aestl	netics												S	S
	Agric	culture					S		S	S					
Benefic	Prima	ary Body Contact Recreation									NS				
a	Publi	c & Private Water Supply				S		S			S				
		Consumption				S									
	N	= Fully Supporting S = Not Supporting El = Not Enough Information	Notes												

Brushy Creek

NEI = Not Enough Information


NTU = nephelometric turbidity units

E. coli = Escherichia coli

μS/cm = microsiemens per centimeter

g Sites

			•	J							
	Location	Sequoyah County									
5	Impoundment	1964									
	Area	358 acres									
	Capacity	3,258 acre-	e-feet								
	Purposes	Flood Cont	rol and Recr	eation							

		Parameter (Descriptions)	Result					Notes/0	Commen	ıts					
		Average Turbidity	8 NTU					0% of v	alues >	OWQS o	f 25 NTU				
		Average Secchi Disk Depth	79 cm												
	jţ	Water Clarity Rating	Good												
	In Situ	Chlorophyll-a	13 mg/	m3											
		Trophic State Index	56					Previous	Previous value = 53						
က္		Trophic Class	Eutrop	hic											
Parameters		Salinity	0.02 - 0).09 ppt											
ıran	Φ.	Specific Conductivity	52.3 –	179.6 µS	S/cm										
<u> </u>	Profile	рН	5.86 -	8.53 pH	units			11 (11.6%) values < 6.5 units							
	₫	Oxidation-Reduction Potential	49 to 4	186.4 mV											
		Dissolved Oxygen	Up to a	57% of w	ater colu	mn < 2	mg/L in								
	ts	Surface Total Nitrogen	0.42 m	ng/L to 0.	89 mg/L										
	Nutrients	Surface Total Phosphorus	0.008 r	ng/L to 0	.038 mg/	L									
	Ž	Nitrogen to Phosphorus Ratio	21:1	21:1					Phosphorus limited						
		Click to learn more about Beneficial Uses□	Turbidity	Hd	Dissolved Oxygen	Metals	ISI	True Color	Sulfates	Chlorides	Total Dissolved Solids	Enterro. & E. coli	Chlor-a		
ses	Fish	h & Wildlife Propagation	S	NS	NEI	S									
Š	Aes	sthetics					S	*							
Beneficial Uses	Agr	iculture							S	S	S				
ene	Prin	mary Body Contact Recreation										S			
Ш	Pub	olic & Private Water Supply											NS		
	S	S = Fully Supporting IS = Not Supporting	*Stando	ards revis	ion, true o	color is fo	or permitt	ting purpos	es only.						

mg/L = milligrams per liter

 μ S/cm = microsiemens/cm

ppt = parts per thousand En = Enterococci

OWQS = Oklahoma Water Quality Standards

mV = millivolts

Chlor-a = Chlorophyll-a

Caney Creek at Barber

Sample Record	Biological Collections	Station ID			
September 1999 – November 2012	Gaging Data	121700040010-001AT			

Stream Data

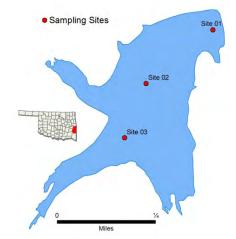
County	Cherokee	Request Data by Email						
Location	North of the Town of Barber off State Highway 100							
Latitude/Longitude	35.785043, -94.856285							
Planning Watershed	rshed Lower Arkansas (8-digit HUC - 11110103)							

		Parameter (<u>Descriptions</u>)	n	Mean	Median	Min./Max	p25/p75	Comments
		Water Temperature (°C)	99	18.1	17.6	4.1/29.3	13.1/23.3	
	itu	Turbidity (NTU)	100	4	2	0/103	1/3	
	In-Situ	pH (units)	97	7.77	7.76	6.46/9.06	7.56/8.02	
		Dissolved Oxygen (mg/L)	99	9.66	9.42	3.94/15.60	8.31/11.11	
		Hardness (mg/L)	99	109	109	64/174	98/120	
w		Total Dissolved Solids (mg/L)	111	142	140	78/254	129/156	
eter	Minerals	Specific Conductivity (uS/cm)	99	219	218	123/391	200/243	
Parameters	Mine	Chloride (mg/L)	90	<10	<10	<10/37	<10/<10	
Pa		Sulfate (mg/L)	90	<10	<10	<10/33	<10/<10	
		Total Phosphorus (mg/L)	105	0.060	0.037	<0.010/1.532	0.030/0.046	
	Nutrients	Total Nitrogen (mg/L)	104	1.12	1.02	0.16/7.04	0.68/1.37	
	Nutr	Nitrate/Nitrite (mg/L)	51	0.85	0.85	0.06/2.89	0.48/1.06	
		Chlorophyll A (mg/m³)	53	1.3	0.8	<0.1/12.1	0.5/1.2	TSI=32.9
	Bacteria	Enterococcus (cfu/100ml)(*-Geo. Mn.)	46	94	20	<10/1408	<10/52	Mean>OWQS
	Вас	E. Coli (cfu/100ml)(*-Geo. Mn.)	46	123	15	<10/2382	<10/39	Mean>OWQS
				-				

Click to learn more about Beneficial Uses	Turbidity	표	Dissolved Oxygen	Metals	Sulfates	Nitrates	Chloride	Total Dissolved Solids	Bacteria	Bio. Fish	Bio. BMI	Sediment
Fish & Wildlife Propagation	S	S	S	S						S	NS	S
Aesthetics												S
Agriculture					S		S	S				
Primary Body Contact Recreation									NS			
Public & Private Water Supply				S		S			S			
Fish Consumption				S								

S = Fully Supporting
NS = Not Supporting
NEI = Not Enough
Information

Beneficial Uses


Notes

Cedar

E. coli = Escherichia coli

Times Visited	Sampling Sites			
4	5			

		- 1 0 . 0	·							
	Location	Le Flore C	County							
3	Impoundment	1937								
	Area	78 acres								
5	Capacity	1,000 acre-	feet							
	Purposes	Recreation	1							

	Pur	poses	Recreation						Miles								
		Parameter (Des	criptions)	Result					Notes/0	Commer	ıts						
		Average Turbidit	ty	7 NTU					100% of values < OWQS of 25 NTU								
		Average Secchi	Disk Depth	92 cm													
	Situ	Water Clarity Ra	ting	Excelle	nt												
	n S	Chlorophyll-a		25.3 mg	g/m3												
		Trophic State Inc	dex	62					Previou	s Value=	- 56						
હ		Trophic Class		Hypereutrophic													
Parameters		Salinity		0.01– 0.08 ppt													
ıran	a)	Specific Conduc	tivity	31.7 – 170.4 µS/cm													
g.	Profile	рН		5.92 – 7.36 pH units					51.56%	< 6.5							
	Ē	Oxidation-Reduc	ction Potential	-58.9 – 416.9 mV													
		Dissolved Oxyge	en	Up to 40% of water column < 2 mg/L in summer													
	Nutrients	Surface Total Nit	trogen	0.56 mg/L to 0.98 mg/L													
		Surface Total Ph	nosphorus	0.023 n	ng/L to 0	.043 mg/L	-										
	Z	Nitrogen to Phos	sphorus Ratio	24:1					Phosph	orus limi	ted						
		Click to learn m Beneficial Uses		Turbidity	된	Dissolved Oxygen	Metals	TSI	True Color	Sulfates	Chlorides	Total Dissolved Solids	Enterro. & E. coli	Chlor-a			
ses	Fish	h & Wildlife Propaç	gation	NEI	NS	NS	S										
<u> </u>	Aes	sthetics						S	*								
fici	Agr	iculture								*	*	S					
Beneficial Uses	Prin	mary Body Contac	t Recreation										S				
Ш	Pub	olic & Private Wate	er Supply														
	N	S = Fully Supporting IS = Not Supporting IEI = Not Enough Inf	ormation Solution	*Stando	ırds revis	ion, true c	olor is fo	r permitt	ting purpos	es only.							
μS/c	m = n	phelometric turbidity nicrosiemens per cer	ntimeter mV = m			Quality Sta	andards		= milligram n = microsie			t = parts pe = Enteroco		d			

Chlor-a = Chlorophyll-a

Flint Creek at Flint

	Sample Record		Biologica	il Collec	tions	Station ID
ı	November 1998 - Current		<u>Gagi</u>	ing Data	1	121700060010-001AT
5	County	De	laware			Request Data By Email

County	Delaware	Request Data By Email
Location	North of the Town o	of Flint on D0581 Rd
Latitude/Longitude	36.1867733, -94.70	0680493
Planning Watershed	Lower Arkansas (8-	-digit HUC - 11110103)

		Parameter (<u>Descriptions</u>)		n	Mean	Medi	ian			p25/p	75	(Comm	ents	
		Water Temperature (°C)		143	17.0	16.	5	2.5/28	.7	11.2/22	2.9				
	iţc	Turbidity (NTU)		140	2	1		0/58		1/2					
	In-Situ	pH (units)		142	7.69	7.6	8	6.44/8.	79	7.44/7.	93				
		Dissolved Oxygen (mg/L)		146	9.50	9.2	8	4.97/14	.94	8.04/10	.75				
		Hardness (mg/L)		145	115	118	5	<10/2	18	104/12	25				
w		Total Dissolved Solids (mg/L)		160	185	182	2	98/55	2	159/20)5				
Parameters	rals	Specific Conductivity (uS/cm)		141	292	29	5	152/45	52	259/32	26				
ıram	Minerals	Chloride (mg/L)		118	14	13	3	<10/4	3	<10/1	8				
Pa		Sulfate (mg/L)		118	17	15	,	<10/6	9	12/19	9				
		Total Phosphorus (mg/L)		150	0.182	0.15	52	0.055/1.	450	0.098/0.	187	See Note	s		
	Nutrients	Total Nitrogen (mg/L)		149	2.92	2.7	9	0.92/7.93		2.26/3.	52				
	Nutr	Nitrate/Nitrite (mg/L)		87	2.51	2.4	3	0.80/4.83		1.75/3.	18				
		Chlorophyll A (mg/m³)		89	1.0	3.0	3	<0.1/4	.2	0.5/1.	2	TSI=30.3			
	Bacteria	Enterococcus (cfu/100ml)(*-Geo.	Mn.)	65	555	52	2	<10/18000		15/10	9	Mean>OWQS			
	Вас	E. Coli (cfu/100ml)(*-Geo. Mn.)		65	194	31		<10/4611		<10/74		Mean>OWQS			
		k to learn more about eficial Uses	Turbidity	五	Dissolved Oxygen	Metals	Sulfates	Nitrates	Chlorides	Total Dissolved Solids	Bacteria	Bio. Fish	Bio. BMI	Sediment	Total Phosphorus
es	Fish	& Wildlife Propagation	S	S	S	S						S	S	S	
ial Uses	Aest	hetics												S	NS
	_	culture					S		S	S					
Benefic		ary Body Contact Recreation									NS				
Be		lic & Private Water Supply				S					S				
		Consumption				S									
	^	S = Fully Supporting NS = Not Supporting NEI = Not Enough Information	Notes 1	00%(7	72 of 72) (of rollin	g Ged	o. Mean e	xcee	d OWQS	criteri	ion of 0.0	37 ppm		

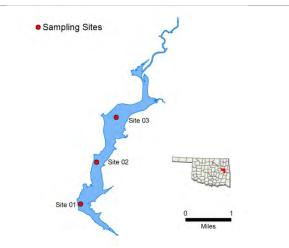
Fourche-Maline Creek at Red Oak

Sample Record	Biological Collections	Station ID
November 1998 - Current	Gaging Data	220100040020-001AT

County	Latimer	Request Data By Email					
Location	Southeast of the To	own of Red Oak off US Highway 270					
Latitude/Longitude	34.91232472, -95.1	5608416					
Planning Watershed Lower Arkansas (8-digit HUC - 11110105)							

		Parameter (<u>Descriptions</u>)		n	Mean	Median	M	in./Ma	X	p25/p75		Com	ments	
		Water Temperature (°C)		157	17.4	18.8		1.0/31.6		10.4/24.0				
	夏	Turbidity (NTU)		157	38	27		5/390		17/42				
	In-Situ	pH (units)		158	7.11	7.02	5	.77/8.76		6.82/7.43				
		Dissolved Oxygen (mg/L)		162	6.12	6.19	0.	84/15.69	9	3.15/8.74				
		Hardness (mg/L)		158	53	49		<10/212		34/63				
w		Total Dissolved Solids (mg/L)		191	103	96	<10/719			69/125				
Parameters	rals	Specific Conductivity (uS/cm)		156	159	138		11/1106		101/196				
ıram	Minerals	Chloride (mg/L)		120	<10	<10		<10/22		<10/10				
Pa		Sulfate (mg/L)		120	23	22		<10/65		17/26				
		Total Phosphorus (mg/L)		159	0.083	0.070	<0.	010/0.86	67	0.049/0.09	2			
	Nutrients	Total Nitrogen (mg/L)		157	0.77	0.73	0	0.16/1.79		0.56/0.94				
	Nutri	Nitrate/Nitrite (mg/L)		101	0.14	0.12	<(0.05/0.97	7	<0.05/0.22	2			
		Chlorophyll A (mg/m³)		42	6.3	2.5	(0.3/34.0		1.2/8.1	TS	=48.6		
	Bacteria	Enterococcus (cfu/100ml)(*-Geo	o. Mn.)	33	460	80	<	<10/8000		52/200	Ме	an>OWQ	S	
	Вас	E. Coli (cfu/100ml)(*-Geo. Mn.)		33	208	74	<	<10/1986		29/148				
		k to learn more about eficial Uses	Turbidity	풘	Dissolved Oxygen	Metals	Sulfates	Nitrates	Chlorides	Total Dissolved Solids	Bacteria	Bio. Fish	Bio. BMI	Sediment
ses	Fish	n & Wildlife Propagation	S	S	NS	NS						S	NS	S
cial Uses	_	thetics												S
icia	_	iculture					S		5	S				
Benefi		nary Body Contact Recreation				NIE.		NE			NS			
Be		olic & Private Water Supply				NEI		NEI			NEI			
		Consumption				S								
		S = Fully Supporting NS = Not Supporting NEI = Not Enough Information	Fish 8	. Wildlii	fe Propag	ation not s	uppon	ting for L	.ead					

Greenleaf


NTU = *nephelometric turbidity units*

E. coli = Escherichia coli

 μ S/cm = microsiemens per centimeter

	Sample Period	d	Visited	Sampling Sites
F	ebruary 2019 – Augu	ıst 2019	4	5
	Location	Muskogee	County	
<u></u>	Impoundment 193			

Г	ebruary 2019 – Augu	ISt 2019	4	5
	Location	Muskogee	County	
	Impoundment	1939		
	Area	920 acres		
	Capacity	14,720 acr	e-feet	
	Purposes	Recreation	1	

		<u>'</u>													
		Parameter (<u>Descriptions</u>)	Result					Notes/	Commer	ıts					
		Average Turbidity	7 NTU					100% (of values	< OWQS	of 25 NT	∪ (n=9)			
		Average Secchi Disk Depth	97 cm												
	<u>:</u>	Water Clarity Rating	Good												
	In Situ	Chlorophyll-a	17.76 r	mg/m3											
		Trophic State Index	59					Previou	ıs value =	= 58					
စ		Trophic Class	Eutrop	hic											
Parameters		Salinity	0.0- 0.	09 ppt											
ıran	a)	Specific Conductivity	0.80 – 162 μS/cm												
g.	Profile	pH	6.26 – 8.11 pH units					33% of recorded values <6.5							
	4	Oxidation-Reduction Potential	48.6 – 4440.5 mV												
		Dissolved Oxygen	Up to 6		ater colum	nn < 2 m	g/L in								
	Ş	Surface Total Nitrogen	0.36 m	ng/L to 0.	77 mg/L										
	Nutrients	Surface Total Phosphorus	0.021 r	0.021 mg/L to 0.037 mg/L											
	Ž	Nitrogen to Phosphorus Ratio	18:1					Phosph	orus limi	ted					
		Click to learn more about Beneficial Uses□	Turbidity	Hd	Dissolved Oxygen	Metals	TSI	True	Sulfates	Chlorides	Total Dissolved Solids	Enterro. & E. coli	Chlor-a		
ses	Fish	h & Wildlife Propagation	NS	S	NEI	S									
Ď	Aes	sthetics					S	*							
Beneficial Uses	Agr	iculture							N/A	N/A	S				
ene	Prir	mary Body Contact Recreation										S			
m	Pub	olic & Private Water Supply											NS		
	Ν	S = Fully Supporting IS = Not Supporting IEI = Not Enough Information	*Standards revision, true color is for permitting purposes only. *50-70% range is undetermined for DO.												

mg/L = milligrams per liter

 μ S/cm = microsiemens/cm

ppt = parts per thousand

En = Enterococci

OWQS = Oklahoma Water Quality Standards

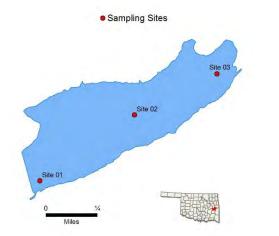
mV = millivolts

Chlor-a = Chlorophyll-a

Illin	10	is	River at T	ah	lequ	uah												
			ole Record	Bio		Collect	<u>ions</u>			tation								
No	vei	mbe	r 1998 - Current		Gagir	ng Data	121700030010-001AT						7		t i			
ata	С	Coun	ty		Chero	okee	Request Data By Email						79-10					
n D	L	.ocat	ion		East of the Town of Tahlequah on US Highway 62													
Stream Data	L	.atitu	de/Longitude		35.92	606447	7, -94.92380373											
TS .	Р	Plann	ing Watershed		Lowe	r Arkan	sas (8-	-digit HU	C - 11	11010	3)							
			Parameter	(<u>Desc</u>	ription	<u>s</u>)	n	Mean	Med	lian	Min./	Max	p25/p	75		Comr	nents	
	ı		Water Temperature	(°C)			144	17.6	17	.3	0.8/3	0.8/31.7 11.0/2						
	١,	<u>글</u>	Turbidity (NTU)				141	7	4	L	0/84	4	3/6					
	ľ	In-Situ	pH (units)				142	7.88	7.8	33	6.47/9	.29	7.58/8.	.13				
	Dissolved Oxygen (mg/L			(mg/L	.)		147	10.06	10.	05	4.66/1	5.88	8.01/11	.97				
	Hardness (mg/L)					144	115	11	14	69/1	68	106/12	23					
	Total Dissolved Solids (m			ng/L)		163	170	17	70	30/5	65	149/18	149/186					
Parameters			ty (uS	S/cm)		144	268	27	71	66/7	13	240/29	240/293					
ame.		Minerals	Chloride (mg/L)				118	10	1	0	<10/2	24	<10/14					
Par	ľ		Sulfate (mg/L)				118	14	1	3	<10/-	48	11/16	6				
	r		Total Phosphorus (mg/L))		151	0.080	0.0	66	<0.010/0	0.438	0.043/0.	0.043/0.103		otes		
	ŀ	utrients	Total Nitrogen (mg/	′L)			150	1.77	1.7	71	0.38/3.76 1.19		1.19/2.	.26				
		Nutri	Nitrate/Nitrite (mg/L	_)			88	1.53	1.4	46	0.24/3	3.61	0.93/1.	.93/1.98				
	Г		Chlorophyll A (mg/i	·			89	3.1	2.	0	<0.1/4	6.4	1.5/3.	.1	TSI=4	1.8		
	l.	iz E	Enterococcus (cfu/	100ml	I)(*-Ge	o. Mn.)	64	151	2	0	<10/2	500	<10/10	00				
		Bacteria	E. Coli (cfu/100ml)	*-Geo	o. Mn.)		64	61	<1	10	<10/8	884	<10/3	34				
			<u> </u>															
			to learn more about ficial Uses			Turbidity	표	Dissolved Oxygen	Metals	Sulfates	Nitrates	Chlorides	Total Dssolved Solids	Bacteria	Bio. Fish	Bio. BMI	Sediment	Total Posphorus
တ္သ	L	·:	Marie Deservati				S	S				U				S		<u> </u>
Use			Wildlife Propagation etics	ווכ		S	<u> </u>	3	S						S	3	S	NS
Beneficial Uses	-		ulture							S		S	S					
nefij			ry Body Contact Re	creat	ion									S				
Bei	Р	Public	c & Private Water S	upply					S		S			S				
	F	ish (Consumption						S									
				Notes	92.5	%(74 of 8	30) of (3-mon	th rolling	Geo. I	Mean abov	ve OV	VQS crit	terion o	f 0.037	ррт		

Illinois River at Watts

	Sample Record	Biological Colle	<u>ctions</u>	Station ID			
	November 1998 - Current	Gaging Da	<u>:a</u>	121700030350-001AT			
ta	County	Adair	quest Data By Email				
Data	Location	North of the Town of Watts on US Highway 59					
Stream	Latitude/Longitude	36.12994064, -94.57151225					
Str	Planning Watershed	Lower Arkansas (8-digit HUC - 11110103)					

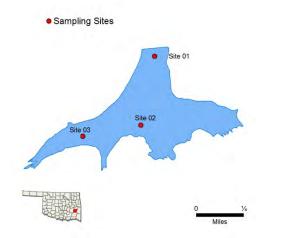

			Parameter (<u>Descriptions</u>)		Mean	Medi	an	Min.	/Max	p2!	5/p75		Comments			
			Water Temperature (°C)	145	17.2	16.	5	2.0/	/31.5	10	.6/24.0					
		캺	Turbidity (NTU)	141	10	7		1/	95		4/12					
		In-Situ	pH (units)	144	7.90	7.92	2	6.51	/9.03	7.7	2/8.12					
			Dissolved Oxygen (mg/L)	147	10.55	10.2	22	4.51/	/18.88	8.7	0/11.77					
			Hardness (mg/L)	146	127	127	7	<10	/220	11	6/136					
w			Total Dissolved Solids (mg/L)	164	195	196	3	95/	/566	171/215						
Parameters		rals	Specific Conductivity (uS/cm)	145	307	310)	149	/713	27	3/339					
ram		Minerals	Chloride (mg/L)	117	13	13		<10	0/28	<	10/16					
Pa			Sulfate (mg/L)	117	16	15		<10	0/97	1	2/19					
			Total Phosphorus (mg/L)	150	0.141	0.09)1	<0.010	0/1.153	0.05	7/0.164	See	Notes			
	Nutrients		Total Nitrogen (mg/L)	149	2.52	2.47	7	0.84	/5.06	2.08/2.87						
			Nitrate/Nitrite (mg/L)	88	2.20	2.20	0	0.72	2/3.96	1.7	1/2.52					
			Chlorophyll A (mg/m³)	89	3.0	2.3	3	<0.1	/15.3	1.	.4/3.4	TSI:	=41.3			
		Bacteria	Enterococcus (cfu/100ml)(*-Geo. Mn.)	65	559	20		<10/	15531	<1	0/100	Mea	n>OW	'QS		
		Bac	E. Coli (cfu/100ml)(*-Geo. Mn.)	65	368	20		<10/	<10/12997 <10/63		10/63	Mean>OWQS				
			to learn more about ficial Uses	Turbidity	H _Q	Dissolved Oxygen	Metals	Sulfates	Nitrates	Chlorides	Total Dissolved Solids	Bacteria	Bio. Fish	Bio. BMI	Sediment	Total Posphorus
	ses	Fish	& Wildlife Propagation	S	S	S	S						S	S	S	
	Beneficial Uses	Aesth	netics												S	NS
			eulture					S		S	S					
	ine!		ary Body Contact Recreation				_					NS				
1	ที		c & Private Water Supply				S		S			S				
			Consumption				S									
	S = Fully Supporting NS = Not Supporting NEI = Not Enough Information			Notes	91.6%(76	of 83) o	of roll	ing Ged	o. Mean	exce	ed OWG	(S crit	erion o	f 0.037	ppm	

John Wells

Capacity

	Sample Period	d	Visited	Sampling Sites					
No	ovember 2016 – Aug	ust 2017	4	5					
	Location	Haskell County							
eral	Impoundment	1936							
er	Area	194 acres	194 acres						

1,352 acre-feet


	Pur	poses	Water Supply,	Recreat	ion					Miles			以			
		Parameter (Des	scriptions)	Result					Notes/0	Commen	nts					
		Average Turbidi	ty	4 NTU					100% c	f values	< OWQS	of 25 NT	∪ (n=10)			
		Average Secchi	Disk Depth	146 cm	l											
	itu	Water Clarity Ra	nting	Excelle	nt											
	In Situ	Chlorophyll		5.2 mg/	5.2 mg/L											
		Trophic State In	dex	47					Previous value = 45							
ည		Trophic Class		Mesotro	ophic											
Parameters		Salinity		0.03 – 0	0.08 ppt											
ıran	a	Specific Conduc	tivity	75.2 –	165.2 µS	S/cm										
g.	Profile	рН		6.39 – 8	8.74 pH ւ	units			4.8% of	4.8% of values < 6.50 pH						
	Ē	Oxidation-Reduc	ction Potential	95.2 – \$	546.3 m\	/										
		Dissolved Oxyge	en	Up to 5 July	0% of wa	ater colum	n < 2.0 r	mg/L in								
	ts	Surface Total Ni	trogen	0.42 mg/L to 0.55 mg/L												
	Nutrients	Surface Total Ph	nosphorus	0.014 n	ng/L to 0	.018 mg/L	-									
	Ž	Nitrogen to Phos	sphorus Ratio	31:1					Phosph	orus limi	ted					
		Click to learn m Beneficial Uses	nore about	Turbidity	된	Dissolved Oxygen	Metals	ISI	True Color	Sulfates	Chlorides	Total Dissolved Solids	En & E. coli	Chlor-a		
ses	Fish	n & Wildlife Propa	gation	S	S	S	S									
Ö	Aes	sthetics						S	*							
Beneficial Uses	Agr	iculture								*	*	S				
ene	Prin	nary Body Contac	t Recreation										S			
M	Pub	olic & Private Wate	er Supply	S												
	N	= Fully Supporting IS = Not Supporting IEI = Not Enough In	formation spot	Standards revision, true color is for permitting purposes only.												

NTU = nephelometric turbidity units $\mu S/cm = microsiemens per centimeter$ E. coli = Escherichia coli

OWQS = Oklahoma Water Quality Standards mV = millivolts Chlor-a = Chlorophyll-a mg/L = milligrams per liter $\mu S/cm = microsiemens/cm$ ppt = parts per thousand En = Enterococci

Lloyd Church (Wilburton)

	Sample Period	b	Visited	Sampling Sites						
De	ecember 2018 – Aug	ust 2019	4	3						
	Location	Latimer Co	unty							
<u>ia</u>	Impoundment	1964								
General	Area	160 acres								
Ge	Capacity	3,060 acre								
	Purposes	Water Supply, Recreation, Flood Control								

		poodo	rato. Capp	pry, reduction, ricou control													
		Parameter (<u>Descr</u>	riptions)		Result					Notes/0	Commer	nts					
		Average Turbidity			10 NTL	J				100% o	f values	< 25 NT	J (n=12)				
		Average Secchi D	epth		99 cm												
	it	Water Clarity Ratir	ng		Excelle	nt											
	In Situ	Chlorophyll-a			5.3 mg/	/m3											
		Trophic State Inde	×		47					Previou	Previous value = 46						
ည		Trophic Class			Mesotro	ophic											
Parameters		Salinity			0.02 – 0	0.04 ppt											
aran	συ	Specific Conductiv	/ity		42.6 – 8	32.6 µS/	cm										
<u> </u>	Profile	рН			6.05 – 7	7.48 pH ւ	units			40% of	40% of values <6.5 pH units						
	₫	Oxidation-Reduction	on Potentia	I	76.1 -59	96.8 mV											
		Dissolved Oxygen			Up to 5 Septem		iter colun	nn < 2 mg	g/L in								
	ts	Surface Total Nitro	ogen		0.27 mg	g/L to 0.4	4 mg/L										
	Nutrients	Surface Total Pho	sphorus		0.013 mg/L to 0.029 mg/L												
	Z	Nitrogen to Phosp	horus Ratio)	17:1					Phosph	orus limi	ted					
		Click to learn mor Beneficial Uses□	re about		Turbidity	Hď	Dissolved Oxygen	Metals	TSI	True Color	Sulfates	Chlorides	Total Dissolved Solids	Enterro. & E. coli	Chlor-a		
ses	Fish	n & Wildlife Propaga	ation		NS	NS	NEI	S									
Ë	Aes	sthetics							S	*							
fici	Agr	iculture									S	S	S				
Beneficial Uses	Prin	mary Body Contact F	Recreation											S			
m	Pub	olic & Private Water	Supply														
	N	= Fully Supporting S = Not Supporting El = Not Enough Infor	mation	Notes	* Standa	ards revisio	on, true co	lor is for p	ermitting	purposes c	nly						

NTU = nephelometric turbidity units μ S/cm = microsiemens per centimeter E. coli = Escherichia coli

OWQS = Oklahoma Water Quality Standards mV = millivolts Chlor-a = Chlorophyll-a mg/L = milligrams per liter μS/cm = microsiemens/cm ppt = parts per thousand En = Enterococci

Lee Creek at Short

	Sample Record		Biological Col	lections	Station ID		
	January 2003 - Current		Gaging D	<u>ata</u>	220200050010-001AT		
ta	County	Se	Sequoyah Request Data by Email				
Data	Location	W	est of the Town	of Short o	n State Highway 101		
Stream	Latitude/Longitude	35	.56589868, -94.	53152717	7		
Str	Planning Watershed	Lo	wer Arkansas (8-digit HUC - 11110104)				

		Parameter (<u>Descriptions</u>)	n	Mean	Median	Min./Max	p25/p75	Comments
		Water Temperature (°C)	164	17.2	16.2	0.2/32.3	10.0/24.7	
	itu	Turbidity (NTU)	164	9	5	1/124	4/9	
	In-Situ	pH (units)	164	7.60	7.58	6.31/8.70	7.36/7.84	
		Dissolved Oxygen (mg/L)	164	9.41	9.10	5.23/14.60	7.75/11.14	
		Hardness (mg/L)	162	46	42	<10/130	35/54	
w		Total Dissolved Solids (mg/L)	167	61	60	<10/173	48/69	
Parameters	rals	Specific Conductivity (uS/cm)	163	96	94	<10/266	77/107	
ıram	Minerals	Chloride (mg/L)	101	<10	<10	<10/11	<10/<10	
Pa		Sulfate (mg/L)	101	<10	<10	<10/49	<10/<10	
		Total Phosphorus (mg/L)	166	0.013	<0.010	<0.010/0.149	<0.010/0.016	
	Nutrients	Total Nitrogen (mg/L)	166	0.27	0.22	<0.10/1.67	0.13/0.33	
	Nutr	Nitrate/Nitrite (mg/L)	144	0.12	0.06	<0.05/1.62	<0.05/0.14	
		Chlorophyll A (mg/m³)	135	2.2	0.8	<0.1/92.0	0.4/1.6	TSI=38.3
	Bacteria	Enterococcus (cfu/100ml)(*-Geo. Mn.)	52	437	<10	<10/7100	<10/53	
	Вас	E. Coli (cfu/100ml)(*-Geo. Mn.)	52	125	<10	<10/2359	<10/35	
								<u>σ</u>

Click to learn more about Beneficial Uses	Turbidity	Hd	Dissolved Oxygen	Metals	Sulfates	Nitrates	Chlorides	Total Dissolved Solids	Bacteria	Bio. Fish	Bio. BMI	Sediment	Total Phosphorus
Fish & Wildlife Propagation	S	S	S	NS						S	S	S	
Aesthetics												NEI	NEI
Agriculture					S		S	S					
Primary Body Contact Recreation									S				
Public & Private Water Supply				S									
Fish Consumption				S									

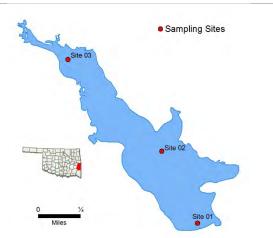
S = Fully Supporting
NS = Not Supporting
NEI = Not Enough Information

Beneficial Uses

Fish & Wildlife Propagation not supporting for Lead

Little Lee Creek at Nicut

	Sample Record		Biological Col	lections	Station ID		
February 2008 - Current			Gaging D	<u>ata</u>	220200050040-001AT		
ta	County	Se	quoyah	Re	equest Data by Email		
Data	Location	W	est of the Town of Short on State Highway 101				
Stream	Latitude/Longitude	35.573236, -94.556816					
Str	Planning Watershed	Lo	wer Arkansas (8	-digit HU	C - 11110104)		



		Parameter (<u>Descriptions</u>)	n	Meai	n N	Median	Mi	n./Ma:	×	p25/p75		Comments			
		Water Temperature (°C)	119	16.7	7	16.0	0.	3/31.4		9.8/23.3					
	豆	Turbidity (NTU)	121	8		3		0/223		2/5					
	In-Situ	pH (units)	120	7.6	1	7.57	6.3	30/8.56		7.43/7.85					
		Dissolved Oxygen (mg/L)	120	9.82	2	9.69	5.0	1/14.47		8.22/11.82					
		Hardness (mg/L)	118	64		61	3	6/140		53/71					
(0		Total Dissolved Solids (mg/L)	126	86		84	4	8/204		72/98					
Parameters	rals	Specific Conductivity (uS/cm)	118	141		136	6	9/314		115/154					
ram	Minerals	Chloride (mg/L)	61	<10)	<10	<	10/<10		<10/<10					
Pa		Sulfate (mg/L)	61	<10)	<10	<	:10/15		<10/<10					
		Total Phosphorus (mg/L)	120	0.01	3	<0.010	<0.0	10/0.25	9 <	<0.010/<0.010					
	Nutrients	Total Nitrogen (mg/L)	120	0.22	2	0.17	<0.	.10/1.41		<0.10/0.25					
	Nutr	Nitrate/Nitrite (mg/L)	120	0.10	0	<0.05	<0.	.05/0.96		<0.05/0.	11				
		Chlorophyll A (mg/m³)	98	0.8		0.6	<(0.1/6.4		0.3/0.9	9	TSI=28	3.8		
	eria	Enterococcus (cfu/100ml)(*-Geo. Mn.)	14	218	3	<10	<1	0/2420		<10/16					
	Bacteria	E. Coli (cfu/100ml)(*-Geo. Mn.)	14	531		<10	<1	0/6488		<10/3	3				
	<u>Click</u> <u>Bene</u>	to learn more about ficial Uses	Turbidity	చ	Dissolved	Metals	Sulfates	Nitrates	Chlorides	Total Dissolved Solids	Bacteria	Bio. Fish	Bio. BMI	Sediment	Phosphorus
ses	Fish	& Wildlife Propagation	S	S	S	S						S	S	S	
al Uses		netics												NEI	NEI
		culture					S		S	S	NICI				
Benefic		ary Body Contact Recreation c & Private Water Supply				S		S		NEI S					
_ m		Consumption				S				3					
	N	= Fully Supporting S = Not Supporting EI = Not Enough Information													

New Spiro

	Sample Period		Times Visited	Sampling Sites					
	November 2017 – July	y 2018	4	5					
	Location	Le Flore Co	ounty						
5	Impoundment	1960							
	Area	254 acres							
5	Capacity	2,160 acre-	e-feet						
	Purposes	Water Supp	ply, Recreation						

Times

	Pur	poses	Water Supply	Recreati	on										
		Parameter (Desc	eriptions)	Result					Notes/0	Commer	nts				
		Average Turbidity	,	14 NTU	J				8% of v	alues >	OWQS o	f 25 NTU	(n=12)		
		Average Secchi E	Disk Depth	54 cm											
	In Situ	Water Clarity Rati	ing	Good											
	드	Chlorophyll-a		37.37 r	ng/m3										
		Trophic State Inde	ex	66					Previous value = 48						
ত		Trophic Class		Hypere	utrophic										
Parameters		Salinity		0.05 -	0.09 ppt										
aran	ø.	Specific Conducti	vity	85.9 –	9 – 199.7 µS/cm										
<u> </u>	Profile	рН		5.91 –	7.84 pH ւ	units		8% > 9.	0 pH						
	₫	Oxidation-Reduct	ion Potential	29.8 –	577.3 m\	/									
		Dissolved Oxyger	า	Up to 4 July	7% of wa	ater colum	nn < 2.0 r	mg/L in	Occurre	d at site	1				
	ts	Surface Total Nitr	ogen	1.035 r	ng/L to 2	.21 mg/L									
	Nutrients	Surface Total Pho	osphorus	0.068 r	ng/L to 0	.229 mg/L	-								
	Ž	Nitrogen to Phosp	ohorus Ratio	12:1					Phosph	orus limi	ted				
		Click to learn mo Beneficial Uses□	ore about	Turbidity	Hd	Dissolved Oxygen	Metals	TSI	True Color	Sulfates	Chlorides	Total Dissolved Solids	En & E. coli	Chlor-a	
ses	Fish	n & Wildlife Propag	ation	S	S	NS	S								
<u> </u>	Aes	sthetics						NEI	*						
Beneficial Uses	Agr	iculture								S	S	S			
ene	Prin	nary Body Contact	Recreation										S		
m	Pub	olic & Private Water	Supply											NS	
	Ν	= Fully Supporting S = Not Supporting El = Not Enough Info	rmation sep	The lake is listed in the WQS as a NLW indicating that the Aesthetics beneficial use is considered threatened by nutrients until studies can be conducted to confirm non-support status *Standards revision, true color is for permitting purposes only											

mg/L = milligrams per liter

 μ S/cm = microsiemens/cm

ppt = parts per thousand

En = Enterococci

OWQS = Oklahoma Water Quality Standards

mV = millivolts

Chlor-a = Chlorophyll-a

NTU = *nephelometric turbidity units*

E. coli = Escherichia coli

 μ S/cm = microsiemens per centimeter

Poteau River at Heavener

Sample Record	Biological Collections	Station ID
November 1998 – December 2012	Gaging Data	220100020010-001AT

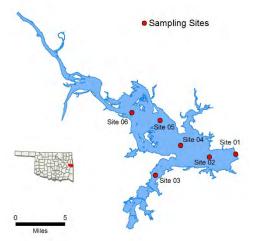
County	Le Flore	Request Data By Email						
Location	South of the Town of Heavener on US Highway 59							
Latitude/Longitude	34.85833476, -94.6	32923436						
Planning Watershed	Lower Arkansas (8-digit HUC - 11110105)							

		Parameter (Description	<u>s</u>)	n	Mean	Median	М	in./Ma	X	p25/p7	5	Com	ıments	
		Water Temperature (°C)		117	19.1	19.8		1.8/35.9		12.2/26.3	3			
	j <u>i</u>	Turbidity (NTU)		118	22	16		0/152		10/24				
	In-Situ	pH (units)		117	7.28	7.25	5	.96/8.97		6.92/7.64				
		Dissolved Oxygen (mg/L)		120	8.21	7.88	3.	3.77/16.00 6.58/9.77		,				
		Hardness (mg/L)		117	49	36	<	<10/188		22/63				
w		Total Dissolved Solids (mg/L)		137	88	65	<	<10/311		39/117				
Parameters	rals	Specific Conductivity (uS/cm)		117	136	101	<	<10/486		57/183				
ram	Minerals	Chloride (mg/L)		76	<10	<10	<10/53			<10/<10				
Pa		Sulfate (mg/L)		76	36	21	<10/146			16/40				
		Total Phosphorus (mg/L)		112	0.075	0.054	<0.	010/0.43	30	0.038/0.08	33			
	Nutrients	Total Nitrogen (mg/L)		110	0.66	0.62	0.17/1.62			0.46/0.76	5			
	Nutr	Nitrate/Nitrite (mg/L)		55	0.16	0.10	<(0.05/0.74	1	<0.05/0.2	3			
		Chlorophyll A (mg/m³)		13	9.5	9.4	1	1.8/29.7		3.4/13.0	TSI	=52.7		
	Bacteria	Enterococcus (cfu/100ml)(*-Geo. Mn.)		28	65	20	<10/400			<10/80	Mea	an>OWQ	S	
	Bac	E. Coli (cfu/100ml)(*-Geo. Mn.)		28	58	31	<10/393			18/51				
		k to learn more about peficial Uses	Turbidity	Hd	Dissolved Oxygen	Metals	Sulfates	Nitrates	Chlorides	Total Dissolved Solids	Bacteria	Bio. Fish	Bio. BMI	Sediment
Se	Fish	n & Wildlife Propagation	S	S	S	S						S	NEI	S
Uses	Aes	thetics												S
cial		iculture					S		S	S				
Benefici		nary Body Contact Recreation									NS			
Be		olic & Private Water Supply				NEI		NEI			NEI			
		n Consumption				S								
		S = Fully Supporting NS = Not Supporting NEI = Not Enough Information												

Poteau River at Pocola

Sample Record	Biological Collections	Station ID
November 1998 - Current	Gaging Data	220100010010-001AT

County	Le Flore	Request Data By Email						
Location	West of the Town of Pocola on E1220 Rd							
Latitude/Longitude	35.23864842, -94.52021262							
Planning Watershed	Lower Arkansas (8	B-digit HUC -11110105)						



		Parameter (Description	<u>s</u>)	n	Mean	Median	М	in./Ma	ΙX	p25/p7	5	Com	ıments	
		Water Temperature (°C)		164	18.5	19.0	2	2.9/34.6		11.7/25.8	3			
	iţ	Turbidity (NTU)		166	74	51		11/476		35/86	139	% of value	es>OWG	ุเร
	In-Situ	pH (units)		166	7.27	7.22	5	.39/8.99		6.97/7.6	1			
		Dissolved Oxygen (mg/L)		167	8.13	7.87	3.	31/15.94	1	6.28/9.70	3			
		Hardness (mg/L)		169	48	46	<	<10/197		33/57				
ဟ		Total Dissolved Solids (mg/L)		188	95	88	<	<10/675		56/116				
Parameters	Minerals	Specific Conductivity (uS/cm)		165	141	128	<	<10/530		84/178				
aram	Mine	Chloride (mg/L)		104	<10	<10		<10/33		<10/<10				
4		Sulfate (mg/L)		104	36	34	<10/88		25/45					
		Total Phosphorus (mg/L)		172	0.128	0.112	0.0	017/0.41	6	0.078/0.1	52			
	Nutrients	Total Nitrogen (mg/L)		169	1.07	0.92	0	.17/6.45		0.77/1.2	1			
	N E	Nitrate/Nitrite (mg/L)		110	0.32	0.20	<(0.05/1.87	7	0.10/0.4)			
		Chlorophyll A (mg/m³)		85	16.6	14.6	1	1.9/77.3		8.6/19.3	TS	I=58.1		
	Bacteria	Enterococcus (cfu/100ml)(*-Geo	o. Mn.)	38	142	31	<10/2420			20/59				
	Вас	E. Coli (cfu/100ml)(*-Geo. Mn.)		38	101	23	<10/2420			<10/49				
		Click to learn more about Beneficial Uses		Hd	Dissolved Oxygen	Metals	Sulfates	Nitrates	Chlorides	Total Dissolved Solids	Bacteria	Bio. Fish	Bio. BMI	Sediment
es	Fish	n & Wildlife Propagation	NS	S	S	NS						S	S	S
al Uses	Aes	thetics												S
	_	iculture					S		S	S				
Benefic		nary Body Contact Recreation									S			
Be		lic & Private Water Supply				NEI		NEI			NEI			
		n Consumption				NS								
	1					gation not s t supporting			.ead					

Robert S. Kerr

	Sample Period	d	Times Visited	Sampling Sites
No	vember 2015 – Septer	mber 2016	4	6
	Location	Sequoyah	County	
	Impoundment	1970		

••			·	
	Location	Sequoyah	County	
<u></u>	Impoundment	1970		
	Area	43,800 acre	es	
	Capacity	525,700 ac	re feet	
	Purposes	Navigation	, Hydropowe	er, and Recreation

	Pur	rposes	Navigation, Hy	yaropowe	er, and Ro	ecreation			Miles						
		Parameter (<u>Des</u>	criptions)	Result					Notes/0	Commen	ıts				
		Average Turbidit	ty	28NTU					42% of	values >	25 NTU				
		Average Secchi	Depth	36 cm											
	iţ	Water Clarity Ra	nting	Fair											
	In-Situ	Chlorophyll-a		17.9 mg	g/m3										
		Trophic State Inc	dex	59	59					s value =	= 56				
<u>s</u>		Trophic Class		Eutroph	nic										
Parameters		Salinity		0.19-0	.44 ppt										
aran	Φ	Specific Conduc	tivity	402.6 –	888.8 µ	S/cm									
ď	Profile	рH		7.66 – 8	8.26 pH ւ	ınits			Neutral	to slightl	y alkaline	9			
	<u>~</u>	Oxidation-Reduc	ction Potential	-9.2.8 to	o 356.1 n	nV									
		Dissolved Oxyge	en	All data mg/L	are abov	ve screen	ing level	of 2.0							
	ts	Surface Total Ni	trogen	0.61mg	/L to 0.98	3 mg/L									
	Nutrients	Surface Total Ph	nosphorus	0.062 n	ng/L to 0.	172 mg/L	-								
	Ž	Nitrogen to Phos	sphorus Ratio	6:1					Possibly co- limited						
		Click to learn m Beneficial Uses	nore about	Turbidity	핍	Dissolved Oxygen	Metals	TSI	True Color	Sulfates	Chlorides	Total Dissolved Solids	Enterro. & E. coli	Chlor-a	
Beneficial Uses	Fisl	h & Wildlife Propa	gation	NS	S	S	NEI								
a □	Aes	sthetics						S	*						
ficia	Agr	riculture								S	S	S			
ene	Prir	mary Body Contac	t Recreation										NEI		
m	Pul	blic & Private Wate	er Supply				NEI								
	٨	S = Fully Supporting NS = Not Supporting NEI = Not Enough Inf	formation sept	*Standa	rds revisio	n, true col	or is for pe	ermitting p	ourposes or	nly					

NTU = nephelometric turbidity units μS/cm = microsiemens per centimeter E. coli = Escherichia coli

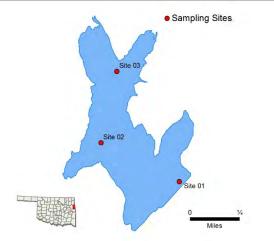
OWQS = Oklahoma Water Quality Standards mV = millivolts Chlor-a = Chlorophyll-a mg/L = milligrams per liter $\mu S/cm = microsiemens/cm$ ppt = parts per thousand En = Enterococci

Sager Creek at West Siloam Springs

Sample Record	Biological Collections	Station ID
November 1998 – December 2012	Gaging Data	121700060080-001AT

County	Delaware	Request Data By Email						
Location	West of the Town	the Town of West Siloam Springs off US Highway 412						
Latitude/Longitude	36.20164298, -94.6	64298, -94.60538182						
Planning Watershed	Lower Arkansas (8	-digit HUC - 11110103)						

		Parameter (<u>Description</u>	<u>s</u>)	n	Mean	Median	M	in./Ma	ΙX	p25/p7	5	Com	ments	
		Water Temperature (°C)		109	17.4	17.2	į	5.9/29.2		12.7/22.	0			
	j <u>i</u>	Turbidity (NTU)		107	3	1		1/55		1/2				
	In-Situ	pH (units)		108	7.71	7.72	6	.59/8.65		7.47/7.9	7			
		Dissolved Oxygen (mg/L)		113	9.09	8.76	4.	66/15.35	5	8.05/10.1		21% of values <owqs 13%="" and="" of="" owqs<="" td="" values<alt=""></owqs>		
		Hardness (mg/L)		108	132	134		<10/198		120/146	6			
w		Total Dissolved Solids (mg/L)		129	269	269		<10/657		222/310)			
Parameters	rals	Specific Conductivity (uS/cm)		109	425	427	,	164/713		359/494	ı.			
ıram	Minerals	Chloride (mg/L)		100	36	34	<10/95		23/47					
Pa		Sulfate (mg/L)		100	25	21		<10/64		16/29				
		Total Phosphorus (mg/L)		114	1.117	1.040	0.0	012/3.96	5	0.649/1.4	85			
	Nutrients	Total Nitrogen (mg/L)			7.44	7.18	2.	2.32/17.53		4.92/9.0	1			
	Nut	Nitrate/Nitrite (mg/L)		51	6.48	5.67	2.	01/17.50	כ	3.78/8.5	4			
		Chlorophyll A (mg/m³)		54	1.6	0.7		<0.1/8.3		0.4/2.4	TS	I=35.5		
	Bacteria	Enterococcus (cfu/100ml)(*-Geo. Mn.)		56	512	109	<	<10/9700		39/425	Me	an>OWC	S	
	Вас	E. Coli (cfu/100ml)(*-Geo. Mn.)		56	217	31	<10/4360		<10/98					
		Click to learn more about			Dissolved Oxygen	<u>8</u>	Sulfates	ates	Chlorides	Total Dissolved Solids	Bacteria	Fish	BMI	Sediment
	Ben	<u>neficial Uses</u>	Turbidity	핕	Diss	Metals	Sulfa	Nitrates	S	Tota Diss Solic	Back	Bio.	Bio.	Sedi
es		n & Wildlife Propagation	S	S	NS	S						S	S	S
cial Uses		thetics												NEI
cial		iculture					S		5	S S				
Benefic		nary Body Contact Recreation									NS			
Be		lic & Private Water Supply				S		S			S			
		n Consumption				S								
		S = Fully Supporting NS = Not Supporting NEI = Not Enough Information												


Stilwell City

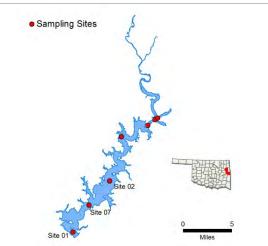
Capacity

	Sample Period	a	Visited	Sampling Sites					
De	ecember 2015 – Octo	ber 2016	3	5					
	Location	Adair Coun	ty						
<u>ia</u>	Impoundment	1965							
eneral	Area	188 acres							

3,110 acre-feet

Times

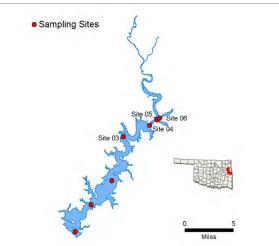
	Pur	poses	Water Supply,	Recreation	on, Flood			-01H				Miles			
		Parameter (Des	scriptions)	Result					Notes/0	ommer	nts				
		Average Turbidit	ty	14 NTU	ı				33% of	values >	OWQS	of 25 NTL	J		
		Average Secchi	Disk Depth	69 cm					100% of values < OWQS of 70						
	Situ	Water Clarity Ra	ating	Average	е										
	드	Chlorophyll-a		9.6mg/r	m3										
		Trophic State Inc	dex	53					Previou	s value =	= 54				
စ်		Trophic Class		Eutroph	nic										
Parameters		Salinity		0.06 – 0).12 ppt										
ıran	o o	Specific Conduc	ctivity	117.3 –	249.5 µ	S/cm									
P. G.	Profile	pН		6.74 –	8.03 pH	units									
	₫.	Oxidation-Reduc	ction Potential	64 – 45	9 mV										
		Dissolved Oxyge	en	Up to 5		iter colum	nn < 2 mo	g/L in	Occurre	d at site	1, the da	am			
	ts S	Surface Total Ni	itrogen	0.63 mg	g/L to 1.2	4 mg/L									
	Nutrients	Surface Total Ph	nosphorus	0.027 m	ng/L to 0.	281 mg/L	-								
	Ž	Nitrogen to Phos	sphorus Ratio	7:1	7:1					Possibly co- limited					
		Click to learn m	nore about	Turbidity	Hd	Dissolved Oxygen	Metals	TSI	True Color	Sulfates	Chlorides	Total Dissolved Solids	Enterro. & E. coli	Chlor-a	
ses	Fish	n & Wildlife Propa	gation	NS	S	NS	S								
<u> </u>	Aes	thetics						S	S						
ficia	Agr	iculture								S	S	S			
Beneficial Uses	Prin	mary Body Contac	t Recreation										S		
Δ	Pub	olic & Private Wate	er Supply												
	N	is = Fully Supporting IS = Not Supporting IEI = Not Enough Int		*Standar	rds revisio	n, true colo	or is for pe	ermitting p	ourposes or	nly					


mg/L = milligrams per liter μS/cm = microsiemens/cm

ppt = parts per thousand En = Enterococci

Tenkiller (1,2,7)

	Sample Period		Visited	Sampling Sites			
	October 2016 – July	2017	4	7			
	Location	Sequoyah (County				
5	Impoundment	1953					
D	Area	12,900 acres					
, de la constant de	Capacity	654,100 acre-feet					
	Purposes	Flood Cont	rol. Hydropo	wer			


Times

				'										
		Parameter (<u>Descriptions</u>)	Result					Notes/	Commer	nts				
		Average Turbidity	3 NTU					100% 0	of values	< OWQS	of 25 NT	U		
		Average Secchi Disk Depth	215 cm	1										
	itu	Water Clarity Rating	Excelle	ent										
	In Situ	Chlorophyll-a	7.77 m	g/m3										
		Trophic State Index	51					Previou	ıs value =	= 56				
<u>s</u>		Trophic Class	Eutrop	hic										
Parameters		Salinity	0.08 -	0.12 ppt										
arar	Ф	Specific Conductivity	165.1 -	- 254.9 µ	S/cm									
ğ	Profile	рН	6.48–8	3.71 pH u	nits									
	₫.	Oxidation-Reduction Potential	68.9-4	68.9-465.5 mV										
		Dissolved Oxygen	Up to 7	'9% of wa	ater colun	nn < 2 m	g/L							
	ts	Surface Total Nitrogen	0.25 m	0.25 mg/L to 0.99 mg/L										
	Nutrients	Surface Total Phosphorus	0.010 ו	0.010 mg/L to 0.021 mg/L										
	Z	Nitrogen to Phosphorus Ratio	31:1	31:1					Possibly co-limited for this sample year					
		Click to learn more about Beneficial Uses	Turbidity	Hd	Dissolved Oxygen	Metals	TSI	True Color	Sulfates	Chlorides	Total Dissolved Solids	Enterro. & E. coli	Chlor-a	
ses	Fish	n & Wildlife Propagation	S	S	NS	NEI								
ت ت	Aes	sthetics					NEI	*						
ficia	Agr	iculture							N/A	N/A	S			
Beneficial Uses	Prin	mary Body Contact Recreation										S		
m	Pub	olic & Private Water Supply				NEI								
	Ν	IS = Fully Supporting IS = Not Supporting IEI = Not Enough Information	threater	*The lake is listed in the WQS as a NLW indica threatened by nutrients until studies can be cor *N/A – parameters not collected in current sam								onsidered		

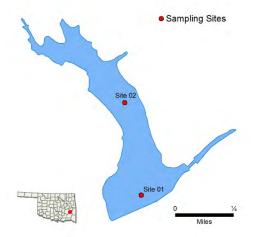
Tenkiller, Illinois River Arm (3-6)

	Sample Period	d	Visited	Sampling Sites			
	October 2016 – July	2017	4	7			
	Location	Sequoyah (County				
<u>[</u> 2	Impoundment	1953					
General	Area	12,900 acres					
Ger	Capacity	654,100 acre-feet					
	Purposes	Flood Control, Hydropower					

		'		'										
		Parameter (<u>Descriptions</u>)		Result					Notes/0	Commer	nts			
		Average Turbidity		28 NTU	ļ				19% of	values >	- OWQS	of 25 NTL	J	
		Average Secchi Disk Depth		66 cm										
	itu	Water Clarity Rating		Average	e									
	In Situ	Chlorophyll-a		21.7 mg	g/m3									
		Trophic State Index		61					Previou	s value =	= 59			
ဂ်		Trophic Class		Hypere	utrophic									
Parameters		Salinity		0.07 – 0).15 ppt									
ran	ø.	Specific Conductivity		154.4 –	154.4 – 316 μS/cm									
J.	Profile	pH		6.81 –	8.9 pH u	nits								
	<u>~</u>	Oxidation-Reduction Potential	98.2-42	2.3 mV										
		Dissolved Oxygen		Up to 7 site 3.	Up to 70% of water column < 2 mg/L at site 3.									
	Si	Surface Total Nitrogen		0.33 mg	0.33 mg/L to 2.49 mg/L									
	Nutrients	Surface Total Phosphorus		0.022 m	0.022 mg/L to 0.232 mg/L									
	Ž	Nitrogen to Phosphorus Ratio		14:1	14:1					Possibly co- limited for this sample year				
		Click to learn more about Beneficial Uses□		Turbidity	Hd	Dissolved Oxygen	Metals	TSI	True Color	Sulfates	Chlorides	Total Dissolved Solids	Enterro. & E. coli	Chlor-a
Ses	Fish	h & Wildlife Propagation		S	S	NEI	NEI							
5 =	Aes	sthetics						NEI	*					
5	Agr	iculture								S	S	S		
Beneficial Uses	Prir	mary Body Contact Recreation											S	
	Pub	olic & Private Water Supply					NEI							NS
	Λ	S = Fully Supporting IS = Not Supporting IEI = Not Enough Information	Notes	*The lak	*The lake is listed in the WQS as a NLW indicat threatened by nutrients until studies can be con-					Aesthetion	cs benefic n-support	cial use is c	onsidered	

NTU = nephelometric turbidity units μS/cm = microsiemens per centimeter E. coli = Escherichia coli

OWQS = Oklahoma Water Quality Standards mV = millivoltsChlor-a = Chlorophyll-a


mg/L = milligrams per liter μS/cm = microsiemens/cm ppt = parts per thousand En = Enterococci

Wayne Wallace

Purposes

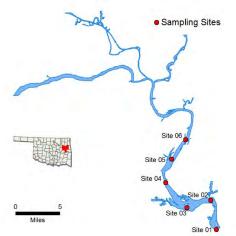
	Sample Period	t	Visited	Sampling Sites			
1	November 2016 – Augu	ıst 2017	4	5			
General	Location	Latimer Co	unty				
	Impoundment	1969					
	Area	94 acres					
ဗီ	Capacity	1,746 acre feet					

Flood Control and Recreation

		poodo	i lood oona	٠. ٠	411G 1 (001)	a redication									
		Parameter (Des	scriptions)		Result					Notes/0	Commer	ıts			
		Average Turbidi	ty		6 NTU					100% o	f values	< OWQS	of 25 NT	∪ (n=6)	
		Average Secchi	Disk Depth		90 cm										
		Water Clarity Ra	ating		Good										
		Chlorophyll-a			13.75 m	ng/m3									
		Trophic State In	dex		56					Previous value = 63					
စ်		Trophic Class			Eutroph	nic									
Parameters		Salinity			0.02 – 0	0.04 ppt									
ıran	a	Specific Conduc	tivity		53.1 – 8	33.1 µS/c	m								
g.	Profile	рН			5.94 – 7	7.61 pH u	ınits			9.8% of recorded values are < 6.5 pH units					
	_ ₫	Oxidation-Reduc	ction Potentia	I	231.9 –	231.9 – 573.3 mV									
		Dissolved Oxyge	en		Up to 40 August	0% of wa	iter colum	nn < 2 mg	g/L in						
	ts	Surface Total Ni	trogen		0.38 mg	0.38 mg/L to 0.64 mg/L									
	Nutrients	Surface Total Ph	nosphorus		0.017 mg/L to 0.031 mg/L										
	Z	Nitrogen to Phos	sphorus Ratio)	20:1					Phosphorus limited					
		Click to learn m Beneficial Uses			Turbidity	Hd	Dissolved Oxygen	Metals	TSI	True Color	Sulfates	Chlorides	Total Dissolved Solids	Enterro. & E. coli	Chlor-a
ses	Fish	n & Wildlife Propa	gation		S	NS	NS	S							
) E	Aes	sthetics							S	*					
ficia	Agr	iculture									S	S	S		
Beneficial Uses	Prir	mary Body Contac	t Recreation											S	
m	Pub	olic & Private Wate	er Supply												
	Λ	S = Fully Supporting IS = Not Supporting IEI = Not Enough In	formation	Notes	soluble therefore	Slightly acidic conditions are common in this soluble bedrock. Due to these conditions it is therefore the Water Board is looking at the a southeastern portion of the state. * Standard					low pH v	alues may g site-spec	be due to	natural ca for water	iuses;

NTU = nephelometric turbidity units μ S/cm = microsiemens per centimeter E. coli = Escherichia coli

OWQS = Oklahoma Water Quality Standards mV = millivolts Chlor-a = Chlorophyll-a mg/L = milligrams per liter μS/cm = microsiemens/cm ppt = parts per thousand En = Enterococci


Webbers Falls

NTU = nephelometric turbidity units

E. coli = Escherichia coli

 μ S/cm = microsiemens per centimeter mV = millivolts

	Sample Period		Times Visited	Sampling Sites			
	February 2019		1**	6			
	Location	Muskogee	County	Click map for site data			
5	Impoundment	1965					
	Area	11,600 acre	0 acres				
	Capacity	170,100 ac	re-feet				
	Purposes	Navigation, Hydropower					

	Pur	poses Navigation, H	yaropowe	power				Site 01 or of					
		Parameter (<u>Descriptions</u>)	Result					Notes/	Commer	nts			
		Average Turbidity	16 NTU	J				0% of v	alues > (OWQS o	f 25 NTU		
		Average Secchi Disk Depth	56.2 cn	n									
	In-Situ	Water Clarity Rating	Poor										
	<u>-</u>	Chlorophyll-a	21.22 r	ng/m3									
		Trophic State Index	61					Previou	Previous value = 52				
ত		Trophic Class	Hypere	utrophic									
Parameters		Salinity	0.26 –	0.26 – 0.49 ppt									
aran	Ф	Specific Conductivity	528.1 -	- 997.3 µ	S/cm								
<u> </u>	Profile	рН	8.07 –	8.20 pH ւ	ınits								
	₫	Oxidation-Reduction Potential	395.5 -	395.5 – 409.0 mV									
		Dissolved Oxygen	All data mg/L	All data are above screening level of 2.0 mg/L									
	ts	Surface Total Nitrogen	1.25 m	1.25 mg/L to 1.48 mg/L									
	Nutrients	Surface Total Phosphorus	0.144 r	0.144 mg/L to 0.154 mg/L									
	Ž	Nitrogen to Phosphorus Ratio	10:1	10:1					Possibly co-limited				
		Click to learn more about Beneficial Uses□	Turbidity	Hd	Dissolved Oxygen	Metals	TSI	True Color	Sulfates	Chlorides	Total Dissolved Solids	En & E. coli	Chlor-a
Beneficial Uses	Fish	n & Wildlife Propagation	NS	S	S	S							
a U	Aes	sthetics					S	*					
fici	Agri	iculture							S	S	S		
sene	Prin	mary Body Contact Recreation										NS	
<u> </u>	Pub	olic & Private Water Supply											
	Ν	S = Fully Supporting IS = Not Supporting IEI = Not Enough Information	*Standa **Only o	rds revisione visit in				ourposes o	nly.				

mg/L = milligrams per liter

μS/cm = microsiemens/cm

ppt = parts per thousand

En = Enterococci


OWQS = Oklahoma Water Quality Standards

Chlor-a = Chlorophyll-a

Wister

Sample Period		Times Visited	Sampling Sites			
November 2017 – July	y 2018	4	5			
Location	LeFlore Co	unty				
Impoundment	1949					
Area	7,333 acres	es				
Capacity	62,360 acre	re feet				
Purposes	Flood Control, Water Supply, Low flow Regulation, and Conservation					

Times

	Fui	Regulation,	and Conse	Conservation									
		Parameter (<u>Descriptions</u>)	Result					Notes/0	Commer	nts			
		Average Turbidity	24 NTU	J				25% of	values >	owqs	25 NTU		
		Average Secchi Disk Depth	45 cm										
	In-Situ	Water Clarity Rating	Fair										
	٠ <u>٠</u>	Chlorophyll-a	22.13 r	mg/m3									
		Trophic State Index	61					Previou	Previous value = 62				
စ်		Trophic Class	Hypere	eutrophic									
Parameters		Salinity	0.04 -	0.07 ppt									
ıran	Φ	Specific Conductivity	66.6 –	66.6 – 158.7 μS/cm									
<u>a</u>	Profile	рН	6.00 –	6.00 – 7.80 pH units					2 % of Values < 6.5 pH units				
	₫.	Oxidation-Reduction Potential	26.9 to	26.9 to 557.3 mV									
		Dissolved Oxygen	Up to 6	62% of wa	ater colum	nn < 2 m	g/L in						
	ts	Surface Total Nitrogen	0.585 r	0.585 mg/L to 0.97 mg/L									
	Nutrients	Surface Total Phosphorus	0.042 r	0.042 mg/L to 0.108 mg/L									
	Z	Nitrogen to Phosphorus Ratio	10:1					Phosphorus limited					
		<u>Click to learn more about</u> <u>Beneficial Uses</u> □	Turbidity	Hd	Dissolved Oxygen	Metals	ISI	True Color	Sulfates	Chlorides	Total Dissolved Solids	En & E. coli	Chlor-a
ses	Fish	h & Wildlife Propagation	NS	NS	NEI	S							
ڪ ڪ	Aes	sthetics					NEI*	*					
ficia	Agr	riculture							S	S	S		
Beneficial Uses	Prin	mary Body Contact Recreation										S	
Bei	Pub	olic & Private Water Supply											NS
	N	S = Fully Supporting IS = Not Supporting IEI = Not Enough Information	*Curren	*Standards revision, true color is for permitting patchers, the lake is listed as a Nutrient Limite Standards (WQS). This listing means that the la					ed (NLW)	in the Ok	lahoma Wa om nutrient	ter Quality s until a n	/ nore

OWQS = Oklahoma Water Quality Standards

intensive study can confirm the Aesthetics beneficial use non-support status.

mg/L = milligrams per liter

 μ S/cm = microsiemens/cm

ppt = parts per thousand

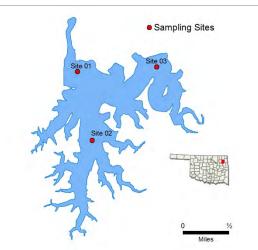
En = Enterococci

mV = millivolts

Chlor-a = Chlorophyll-a

NEI = Not Enough Information

NTU = *nephelometric turbidity units*


E. coli = Escherichia coli

 μ S/cm = microsiemens per centimeter

W.R. Holway

	Sample Period	d	Times Visited	Sampling Sites
N	ovember 2015 – Aug	ust 2016	4	5
	Location	Mayes Cou	inty	

IN	Sveriber 2015 – Aug	ust 2010	4	5			
	Location	Mayes Cou	nty				
פופו	Impoundment	1968					
	Area	712 acres					
ם פ	Capacity	48,000 acre	e-feet				
	Purposes	Water Supp	oly, Hydropo	wer, Recreation			

	Parameter (Descriptions)		Result				Notes/Comments						
Parameters	In-Situ	Average Turbidity	2 NTU	2 NTU				100% of Values < OWQS of 25					
		Average Secchi Disk Depth	147 cm										
		Water Clarity Rating	Excellent										
		Chlorophyll-a	18.9 mg/m3										
		Trophic State Index	59				Previous Value= 56						
		Trophic Class	Eutrop	Eutrophic									
	0	Salinity	0.09 – 0.22 ppt										
		Specific Conductivity	201.8 – 451.2 μS/cm										
	Profile	рН	6.66 –	6.66 – 9.00 pH units									
	ď	Oxidation-Reduction Potential	128.5 to 514 mV										
		Dissolved Oxygen	Up to 48% of water column < 2 mg/L in summer										
	Nutrients	Surface Total Nitrogen	0.41 mg/L to 0.59mg/L										
		Surface Total Phosphorus	0.042 mg/L to 0.067 mg/L										
		Nitrogen to Phosphorus Ratio	9:1	9:1				Phosphorus limited					
Beneficial Uses		Click to learn more about Beneficial Uses□	Turbidity	Ha	Dissolved Oxygen	Metals	TSI	True Color	Sulfates	Chlorides	Total Dissolved Solids	Enterro. & E. coli	Chlor-a
	Fish & Wildlife Propagation		S	S	NS	S							
	Aes	thetics					S	*					
	Agri	iculture							S	S	S		
	Prin	nary Body Contact Recreation										S	
	Pub	olic & Private Water Supply											
	N	S = Not Supporting S = Not Supporting EI = Not Enough Information	*Standards revision, true color is for permitting purposes only										

NTU = nephelometric turbidity units μ S/cm = microsiemens per centimeter E. coli = Escherichia coli

OWQS = Oklahoma Water Quality Standards mV = millivolts Chlor-a = Chlorophyll-a mg/L = milligrams per liter μS/cm = microsiemens/cm ppt = parts per thousand En = Enterococci

OKLAHOMA COMPACT WATERS IN THE 2022 INTEGRATED REPORT

Oklahoma 2022 Integrated Report Appendix B

Legend

Legend for Attainment				
Code Description				
F	Fully Supporting			
N	Not Supporting			
I	Insufficient Information			
Х	Not Assessed			

USE ID	Description
124	Aesthetic
125	Agriculture
129	Emergency Water Supply
130	Cool Water Aquatic Community
131	Habitat Limited Aquatic Community
132	Trout Fishery
133	Warm Water Aquatic Community
134	Hydropower
135	Indus. & Muni. Process/Cooling Water
136	Navigation
137	Primary Body Contact Recreation
138	Public and Private Water Supply
139	Secondary Body Contact Recreation
1003	Fish Consumption
1004	Outstanding Resource
1005	Sensitive Water Supply
1006	High Quality Water

Category	Description
1	Attaining the Water Quality Standard and no use is threatened
2	Attaining some of the designated uses; no use is threatened; and insufficient or no data or information is available to determine if the remaining uses are attained or threatened
3	Insufficient or no data and information to determine if any designated use is attained
4 4a	Impaired or threatened for one or more designated uses but does not require the development of a TMDL • TMDL has been completed
4b 4c	 Other pollution control requirements are reasonable expected to result in the attainment of the water quality standard in the near future Impairment is not caused by a pollutant
5	The water quality standard is not attained. The waterbody is impaired or threatened for one or more designated uses by a pollutant(s), and requires a TMDL

ID	Description
91	Ammonia (Unionized) -Toxin
96	Arsenic
104	Barium
127	Cadmium
138	Chloride
153	Chlorpyrifos
154	Chromium (total)
163	Copper
187	Diazinon
198	Dieldrin
215	Enterococcus
217	Escherichia coli
230	Fishes Bioassessments
267	Lead
302	Nitrates
317	Oil and Grease
322	Oxygen, Dissolved
372	Selenium
375	Silver
385	Sulfates
398	Total Coliform
399	Total Dissolved Solids
400	Total Fecal Coliform
413	Turbidity
423	Zinc
441	рН
462	Total Phosphorus

ID	Description
2	Acid Mine Drainage
33	Discharges from Biosolids (SLUDGE) Storage, Application or Disposal
62	Industrial Point Source Discharge
68	Land Application of Wastewater Biosolids (Non-agricultural)
70	Leaking Underground Storage Tanks
82	Mine Tailings
84	Municipal (Urbanized High Density Area)
85	Municipal Point Source Discharges
	On-site Treatment Systems (Septic Systems and Similar
92	Decencentralized Systems)
100	Runoff from Permitted Confined Animal Feeding Operations (CAFOs)
102	Petroleum/natural Gas Activities (Legacy)
119	Silviculture Harvesting
124	Spills from Trucks or Trains
127	Surface Mining
140	Source Unknown
155	Natural Sources
156	Agriculture
157	Habitat Modification - other than Hydromodification

TMDL Development Priority Schedule

TMDL Priority	Proposed Initiation of TMDL Development*
1	2024
2	2025-2027
3	2028-2030
4	2031-2033

^{*}Dates are only estimates and subject to change

			-				
Waterbody ID	HUC 8	Waterbody Name	Size	Unit	Cause	TMDL Priority	
OK121600010050_00	11070209	Fort Gibson Lake	12464	Acres	DISSOLVED OXYGEN	2	46, 108, 133, 136, 140
OK121600010060_00	11070209	Ranger Creek	7.94	Miles	PH	2	140
OK121600010080_00	11070209	Pecan Creek	9.19	Miles	BENTHIC MACROINVERTEBRATES BIOASSESSMENTS	2	140
OK121600010280_00	11070209	Neosho River	14.26	Miles	BENTHIC MACROINVERTEBRATES BIOASSESSMENTS, DISSOLVED OXYGEN	2	46, 56, 62, 85, 87, 92, 108, 133, 136, 140
OK121600010290_00	11070209	Spring Creek	39.70	Miles	BENTHIC MACROINVERTEBRATES BIOASSESSMENTS	2	140
OK121600010430_00	11070209	Chouteau Creek	22.25	Miles	AMMONIA, UN-IONIZED, DISSOLVED OXYGEN, PH	2	46, 59, 87, 92, 108, 111, 133, 136, 140
OK121600020020_00	11070209	Hudson Lake, Lower	5802	Acres	DISSOLVED OXYGEN	2	140
OK121600020170_00	11070209	Neosho River	10.89	Miles	LEAD, DISSOLVED OXYGEN	3	46, 56, 62, 82, 85, 87, 92, 108, 133, 136,
OK121600030020_00	11070209	Grand Lake O' the Cherokees, Lower	10051	Acres	DISSOLVED OXYGEN, LEAD	2	82, 140
OK121600050020_00	11070209	Spavinaw Lake	1584	Acres	CHLOROPHYLL-A, DISSOLVED OXYGEN	1	4, 46, 59, 92, 108, 133, 136, 140, 146
OK121600050070_00	11070209	Eucha Lake (Upper Spavinaw)	2860	Acres	CHLOROPHYLL-A, DISSOLVED OXYGEN	1	4, 46, 59, 92, 108, 133, 136, 140, 146
OK121600060060_10	11070209	Big Cabin Creek	4.16	Miles	SULFATE	3	49, 140
OK121600060080_00	11070209	Little Cabin Creek	32.31	Miles	PH, DISSOLVED OXYGEN	4	140
OK121600060200 00	11070209	Bull Creek	10.83	Miles	SULFATE, DISSOLVED OXYGEN, TOTAL DISSOLVED SOLIDS (TDS), CHLORIDE	4	4, 59, 62, 84, 85, 92, 140
OK121600060220 00	11070209	Big Cabin Creek	11.58	Miles	TOTAL DISSOLVED SOLIDS (TDS), SULFATE	4	49, 97, 102, 140
OK121600060240 00	11070209	Pawpaw Creek	18.40	Miles	DISSOLVED OXYGEN	4	46, 59, 87, 92, 108, 111, 133, 136, 140, 156
_							8, 46, 59, 85, 87, 92, 102, 108, 111, 128,
OK121610000050_10	11070209	Pryor Creek	4.97	Miles	PH, DISSOLVED OXYGEN	4	133, 136, 140
OK121610000090 00	11070209	Pryor Creek	2.35	Miles	DISSOLVED OXYGEN	4	84, 85, 92, 140, 156
OK121610000090_10	11070209	Pryor Creek	12.12	Miles	DISSOLVED OXYGEN, FISH BIOASSESSMENTS	4	46, 49, 59, 87, 92, 102, 108, 111, 136, 140
OK121600020050 00	11070209	WR Holway Reservoir (ChimneyRock Lake)	712	Acres	DISSOLVED OXYGEN	2	140
OK121600020200_00	11070209	Summerfield Creek	10.38	Miles	BENTHIC MACROINVERTEBRATES BIOASSESSMENTS	3	140
OK120400010070 00	11110102	Webbers Falls Lake	11600	Acres	TURBIDITY	3	140
OK120400010070_00	11110102	Greenleaf Creek	15.31	Miles	BENTHIC MACROINVERTEBRATES BIOASSESSMENTS	3	140
OK120400010120_00 OK120400010130 00	11110102	Greenleaf Lake	920	Acres	MERCURY, CHLOROPHYLL-A	3	140
OK120400010130_00 OK120400010130_00	11110102	Bayou Manard	14.02	Miles	BENTHIC MACROINVERTEBRATES BIOASSESSMENTS	3	39, 140
						3	140
OK120400010425_00	11110102	Arkansas River, Unnamed Trib of	2.23	Miles	FISH BIOASSESSMENTS, BENTHIC MACROINVERTEBRATES BIOASSESSMENTS		1 -
OK120400020010_00	11110102	Dirty Creek	44.18	Miles	DISSOLVED OXYGEN	3	46, 59, 87, 92, 108, 111, 133, 136, 140
							39, 46, 49, 62, 85, 87, 92, 108, 111, 133,
OK120400020030_00	11110102	Dirty Creek, South Fork	15.55	Miles	SULFATE, DISSOLVED OXYGEN, BENTHIC MACROINVERTEBRATES BIOASSESSMENTS	3	136, 140
OK120400020110_00	11110102	Dirty Creek, Georges Fork	10.05	Miles	DISSOLVED OXYGEN	4	39, 46, 87, 92, 108, 111, 133, 136, 140
OK120400020160_00	11110102	Butler Creek	10.34	Miles	DISSOLVED OXYGEN	4	46, 59, 87, 92, 108, 111, 133, 136, 140
OK120400020240_00	11110102	Shady Grove Creek	10.80	Miles	PH, SULFATE, TOTAL DISSOLVED SOLIDS (TDS), DISSOLVED OXYGEN	4	8, 49, 102, 140
OK120400010470_00	11110102	Coody Creek, Unnamed Trib of	1.28	Miles	BENTHIC MACROINVERTEBRATES BIOASSESSMENTS	3	140
OK121700010010_00	11110103	Illinois River	9.47	Miles	DISSOLVED OXYGEN	1	140
OK121700010020_00	11110103	Deep Branch	8.71	Miles	DISSOLVED OXYGEN	1	39, 140
OK121700020020_00	11110103	Tenkiller Ferry Lake	8442	Acres	DISSOLVED OXYGEN, MERCURY, PHOSPHORUS, TOTAL	1	140
OK121700020110_00	11110103	Chicken Creek	3.54	Miles	FISH BIOASSESSMENTS	1	46, 59, 87, 92, 108, 111, 133, 136, 140
OK121700020180_00	11110103	Elk Creek	8.46	Miles	DISSOLVED OXYGEN	1	140
OK121700020220_00	11110103	Tenkiller Ferry Lake, Illinois River Arm	5032	Acres	CHLOROPHYLL-A, MERCURY, PHOSPHORUS, TOTAL	1	4, 59, 108, 136, 140, 146
							46, 49, 59, 72, 87, 92, 102, 108, 111, 136,
OK121700020270_00	11110103	Park Hill Branch	6.86	Miles	BENTHIC MACROINVERTEBRATES BIOASSESSMENTS	3	140
_							4, 46, 59, 85, 92, 100, 108, 133, 136, 140,
OK121700030010 00	11110103	Illinois River	7.68	Miles	ENTEROCOCCUS, PHOSPHORUS, TOTAL	1	146
OK121700030030 00	11110103	Stick Ross Creek (Ross Branch)	4.54	Miles	BENTHIC MACROINVERTEBRATES BIOASSESSMENTS	1	140
OK121700030040 00	11110103	Tahlequah Creek (Town Branch)	6.21	Miles	ESCHERICHIA COLI (E. COLI)	1	46, 92, 108, 133, 136, 140
		(**************************************	1		(4, 46, 59, 85, 92, 100, 108, 133, 136, 140,
OK121700030080_00	11110103	Illinois River	31.68	Miles	ENTEROCOCCUS, PHOSPHORUS, TOTAL	1	146
OK121700030080_00	11110103	Pumpkin Hollow Creek	9.27	Miles	DISSOLVED OXYGEN	1	140
OK121700030090_00	11110103	Cedar Hollow Creek	3.60	Miles	BENTHIC MACROINVERTEBRATES BIOASSESSMENTS, FISH BIOASSESSMENTS	1	39, 140
CK121700030110_00	11110103	ccdai Hollow Creek	3.00	ivilles	DENTITIO WACKONIVERTEDINATES DIONSSESSIVIENTS, FISH DIONSSESSIVIENTS	1	4, 46, 59, 85, 92, 100, 108, 133, 136, 140,
OV121700020200 00	11110103	Illinois Bivor	15.65	Miles	PHOSPHORUS, TOTAL, ESCHERICHIA COLI (E. COLI), TURBIDITY, ENTEROCOCCUS	1	146
OK121700030280_00		Illinois River				1	•
OK121700030290_00	11110103	Flint Creek	1.60	Miles	PHOSPHORUS, TOTAL, DISSOLVED OXYGEN	1	4, 46, 59, 92, 108, 133, 136, 140, 146
01/424700020250 62	44440403	We are to the	5.40		DUOCDUODUS TOTAL ENTEDOCOCCUS ESCUEDICUIA COLLIE COLLI		4, 34, 46, 59, 85, 92, 100, 108, 133, 136,
OK121700030350_00	11110103	Illinois River	5.18	Miles	PHOSPHORUS, TOTAL, ENTEROCOCCUS, ESCHERICHIA COLI (E. COLI)	1	140, 146
OK121700040010_00	11110103	Caney Creek	20.92	Miles	ESCHERICHIA COLI (E. COLI), ENTEROCOCCUS, BENTHIC MACROINVERTEBRATES BIOASS	3	46, 59, 85, 92, 100, 108, 136, 140

							4, 46, 59, 85, 92, 100, 108, 133, 136, 140,
OK121700050010 00	11110103	Illinois River, Baron Fork	25.15	Miles	PHOSPHORUS, TOTAL	3	146
OK121700050070 00	11110103	Walltrip Branch	6.90	Miles	BENTHIC MACROINVERTEBRATES BIOASSESSMENTS	3	140
OK121700050090 00	11110103	Tyner Creek	15.92	Miles	DISSOLVED OXYGEN	3	140
OK121700060010 00	11110103	Flint Creek	7.75	Miles	PHOSPHORUS, TOTAL	1	4, 46, 59, 85, 92, 100, 108, 140, 146
OK121700060080 00	11110103	Sager Creek	4.15	Miles	SEDIMENTATION/SILTATION, BENTHIC MACROINVERTEBRATES BIOASSESSMENTS, ENTE	1	4, 46, 59, 85, 92, 108, 133, 136, 140, 146
OK121700030020 00	11110103	Tahleguah Creek	1.84	Miles	ENTEROCOCCUS, ESCHERICHIA COLI (E. COLI)	1	140
OK220200010010 00	11110104	Arkansas River	20.59	Miles	BENTHIC MACROINVERTEBRATES BIOASSESSMENTS, ENTEROCOCCUS	3	46, 59, 92, 108, 136, 140
OK220200020020_00	11110104	Robert S. Kerr Lake	43380	Acres	TURBIDITY	3	140
OK220200030040_00	11110104	Brushy Creek Lake	358	Acres	CHLOROPHYLL-A	2	140
OK220200030120_00	11110104	Stilwell City Lake	188	Acres	DISSOLVED OXYGEN, TURBIDITY, MERCURY	2	46, 108, 133, 136, 140
OK220200040010_10	11110104	Sans Bois Creek	10.76	Miles	SULFATE	4	140
OK220200050010_00	11110104	Lee Creek	1.87	Miles	LEAD, ENTEROCOCCUS	3	46, 92, 108, 133, 136, 140, 146
OK220100010010_00	11110105	Poteau River	23.89	Miles	ENTEROCOCCUS	3	46, 59, 85, 92, 100, 108, 136, 140
OK220100010010_10	11110105	Poteau River	1.55	Miles	ENTEROCOCCUS	4	46, 59, 85, 92, 100, 108, 136, 140
OK220100010010_40	11110105	Poteau River	21.35	Miles	LEAD, SELENIUM, COPPER, SILVER, CADMIUM	3	140
OK220100010050_00	11110105	New Spiro Lake	254	Acres	DISSOLVED OXYGEN, CHLOROPHYLL-A, PH	3	46, 92, 108, 133, 136, 140
OK220100010160_00	11110105	Sugarloaf Creek	15.00	Miles	DISSOLVED OXYGEN, PH	3	140
OK220100010265_00	11110105	Rock Creek Tributary!	2.01	Miles	FISH BIOASSESSMENTS	4	46, 49, 59, 87, 92, 102, 108, 111, 136, 140
OK220100020010_10	11110105	Poteau River	27.04	Miles	ENTEROCOCCUS, ESCHERICHIA COLI (E. COLI), PH	3	46, 59, 85, 92, 100, 108, 136, 140
OK220100020020_00	11110105	Wister Lake	7333	Acres	PHOSPHORUS, TOTAL, TURBIDITY, MERCURY, PH, CHLOROPHYLL-A	2	140
OK220100020030_00	11110105	Poteau River, Black Fork	1.96	Miles	PH	2	140
OK220100020040_00	11110105	Poteau River, Black Fork	28.60	Miles	PH	2	140
OK220100020060_00	11110105	Cedar Lake	78	Acres	PH, DISSOLVED OXYGEN, MERCURY	2	46, 92, 108, 133, 136, 140
OK220100020080_00	11110105	Big Creek	12.57	Miles	PH, BENTHIC MACROINVERTEBRATES BIOASSESSMENTS	2	39, 46, 62, 69, 85, 87, 92, 108, 111, 133, 136, 140
OK220100040020_00	11110105	Fourche Maline Creek	36.94	Miles	DISSOLVED OXYGEN, PH	2	46, 62, 69, 85, 87, 92, 108, 111, 133, 136, 140
OK220100040030_00	11110105	Holson Creek	17.38	Miles	PH	4	140
OK220100040050_00	11110105	Red Oak Creek	10.95	Miles	PH, DISSOLVED OXYGEN	2	46, 85, 92, 108, 133, 136, 140
OK220100040080_00	11110105	Bandy Creek	12.44	Miles	FISH BIOASSESSMENTS	2	46, 49, 59, 87, 92, 102, 108, 111, 136, 140
OK220100040100_00	11110105	Lloyd Church Lake (Wilburton City)	160	Acres	PH, MERCURY, TURBIDITY	2	140
OK220100040140_00	11110105	Carlton Lake	52	Acres	MERCURY	2	140
OK220100040150_00	11110105	Wayne Wallace Lake	94	Acres	MERCURY, DISSOLVED OXYGEN, PH	2	46, 92, 108, 133, 136, 140

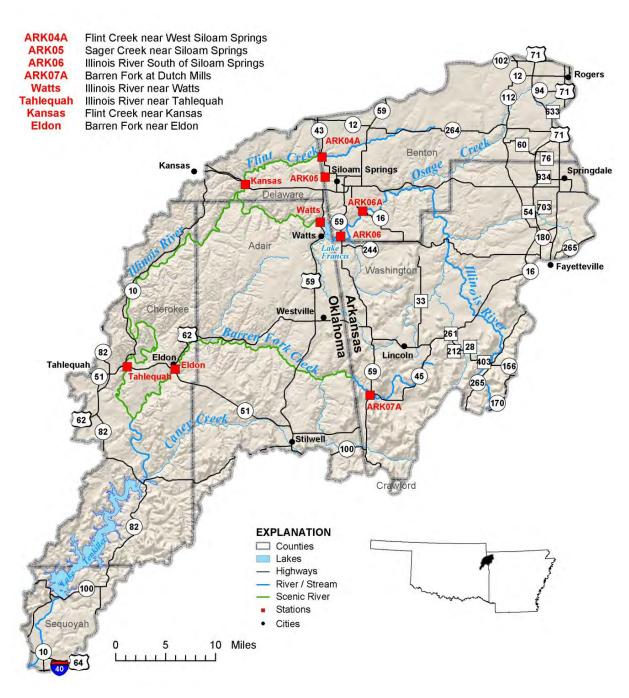
OKLAHOMA WATER RESOURCES BOARD

PROGRAM UPDATES

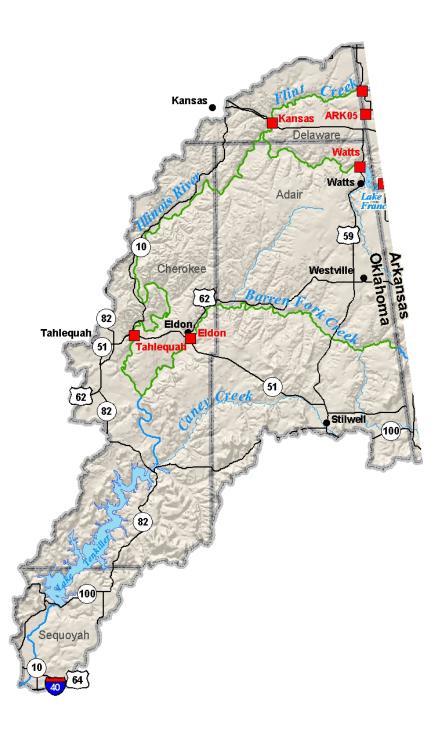
WATER Division staff are currently working on several initiatives in support of the Oklahoma Comprehensive Water Plan efforts. Staff are working on a water quality trends analysis to determine if water quality is getting better, staying the same, or declining. This is a statewide analysis and includes both surface water and groundwater.

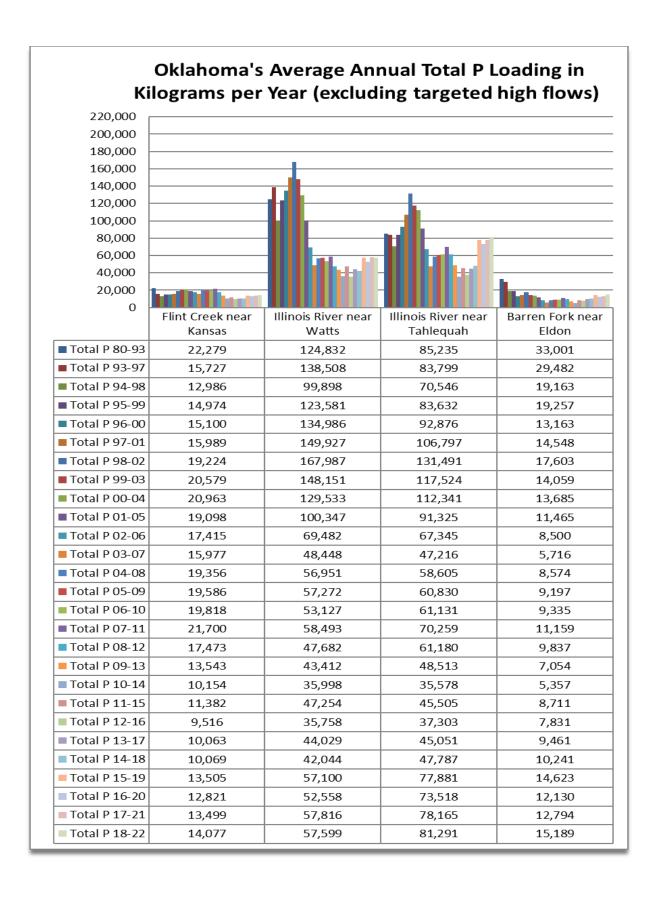
Additionally, staff are conducting bathymetric surveys to collect data and generate bathymetric maps that can be utilized in several water management activities. Obtaining accurate storage volumes for lakes is an integral tool for water resources management. One such activity is the determination of reliable yield for our municipal reservoirs where no such information currently exists. This effort started recently and should be ongoing for years to come.

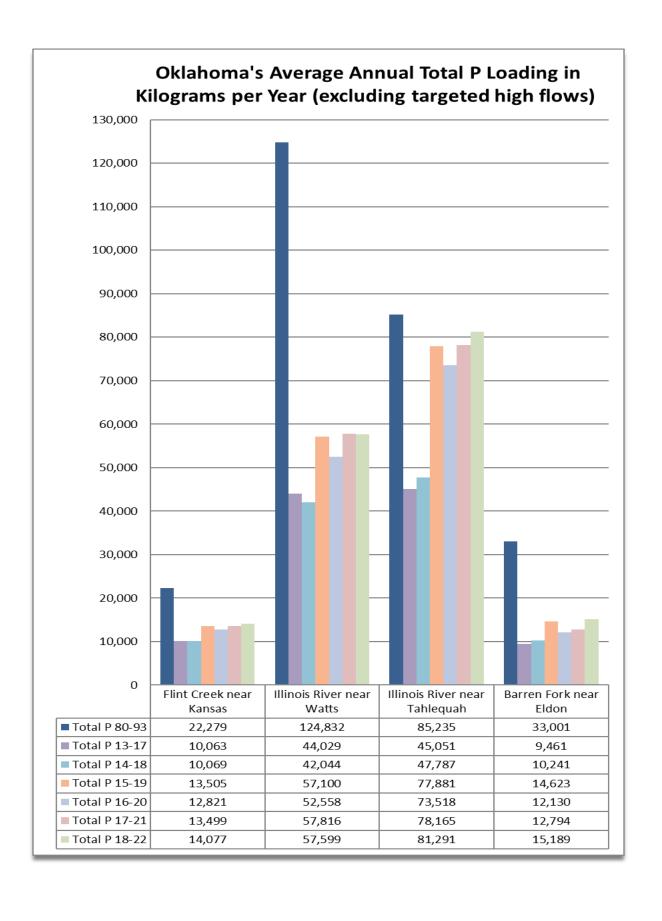
Lastly, monitoring staff continue to develop and expand our real-time automated monitoring networks. The availability of this data to the public and other interested parties should further enhance our water management efforts. In recent months, access to the OWRB's discrete and continuous data has been made publicly available on our website. Continuous data includes stream stage/discharge and water well level, while discrete data includes physical, chemical, and biological information for lakes, streams, and groundwater.


For more information, please visit our website at:

https://oklahoma.gov/owrb/maps-and-data/monitoring-data.html


Completed TMDL's In the Arkansas-Oklahoma Compact Area: Provided by the Oklahoma Department of Environmental Quality

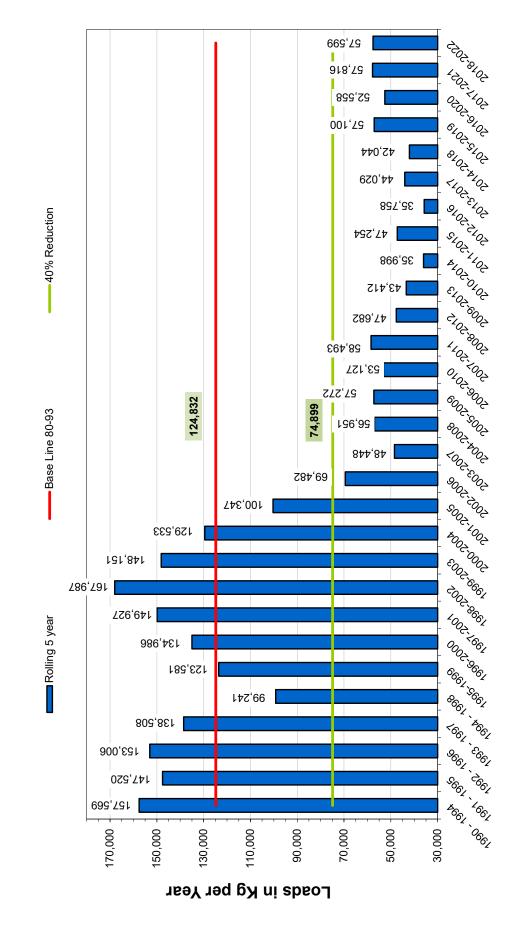

					TMDL
Waterbody ID	HUC8	Waterbody Name	Cause	TMDL ID	Completion Date
OK121600010010_00	11070209	Neosho River	Enterococcus	42581	9/27/2012
OK121600010060_00	11070209	Ranger Creek	Enterococcus	34847	7/28/2008
OK121600010100_00	11070209	Fourteenmile Creek	Enterococcus	34848	7/28/2008
OK121600010430_00	11070209	Chouteau Creek	Enterococcus	42582	9/27/2012
OK121600010430_00	11070209	Chouteau Creek	Escherichia coli	42582	9/27/2012
OK121600010440_00	11070209	Crutchfield Branch	Escherichia coli	34849	7/28/2008
OK121600010440_00	11070209	Crutchfield Branch	Enterococcus	34849	7/28/2008
OK121600020030_10	11070209	Saline Creek	Enterococcus	58701	5/13/2014
OK121600020070_00	11070209	Little Saline Creek	Enterococcus	58702	5/13/2014
OK121600050020_00	11070209	Spavinaw Lake	Phosphorus	38670	6/9/2010
OK121600050070_00	11070209	Eucha Lake	Phosphorus	38667	6/9/2010
OK121600050150_00	11070209	Spavinaw Creek	Enterococcus	58705	5/13/2014
OK121600050160_00	11070209	Beaty Creek	Enterococcus	58707	5/13/2014
OK121600050180_00	11070209	Cloud Creek	Enterococcus	58708	5/13/2014
OK121600060080_00	11070209	Little Cabin Creek	Escherichia coli	50980	10/1/2012
OK121600060080_00	11070209	Little Cabin Creek	Enterococcus	50980	10/1/2012
OK121610000050_10	11070209	Pryor Creek	Escherichia coli	58709	5/13/2014
OK121610000050_10	11070209	Pryor Creek	Enterococcus	58709	5/13/2014
OK121610000090_00	11070209	Pryor Creek	Turbidity	58709	5/13/2014
OK120400010260_00	11110102	Arkansas River	Enterococcus	42530	9/27/2012
OK120400010400_00	11110102	Coody Creek	Enterococcus	42532	9/27/2012
OK120400010400_00	11110102	Coody Creek	Escherichia coli	42532	9/27/2012
OK120400020010_00	11110102	Dirty Creek	Enterococcus	42533	9/27/2012
OK120400020010_00	11110102	Dirty Creek	Turbidity	42533	9/27/2012
OK120400020030_00	11110102	Dirty Creek, South Fork	Enterococcus	42535	9/27/2012
OK120400020110_00	11110102	Dirty Creek, Georges Fork	Enterococcus	42536	9/27/2012
OK120400020160_00	11110102	Butler Creek	Turbidity	42538	9/27/2012
OK120400020160_00	11110102	Butler Creek	Escherichia coli	42538	9/27/2012
OK120400020160_00	11110102	Butler Creek	Enterococcus	42538	9/27/2012
OK120400020190_00	11110102	Elk Creek	Enterococcus	42537	9/27/2012
OK120400020240_00	11110102	Shady Grove Creek	Enterococcus	42539	9/27/2012
OK220200030010_20	11110104	Sallisaw Creek	Enterococcus	58780	5/13/2014
OK220200040010_10	11110104	Sans Bois Creek	Enterococcus	58782	5/13/2014
OK220200040010_40	11110104	Sans Bois Creek	Enterococcus	35635	10/20/2008
OK220200040010_40	11110104	Sans Bois Creek	Escherichia coli	35635	10/20/2008
OK220200040050_00	11110104	Sans Bois Creek, Mountain Fork	Escherichia coli	35626	10/20/2008
OK220100010010_00	11110105	Poteau River	Turbidity	58800	5/13/2014
OK220100010010_40	11110105	Poteau River	Turbidity	58820	5/13/2014
OK220100030010_00	11110105	Brazil Creek	Enterococcus	58760	5/13/2014
OK220100040020_00	11110105	Fourche Maline Creek	Enterococcus	35634	10/28/2008

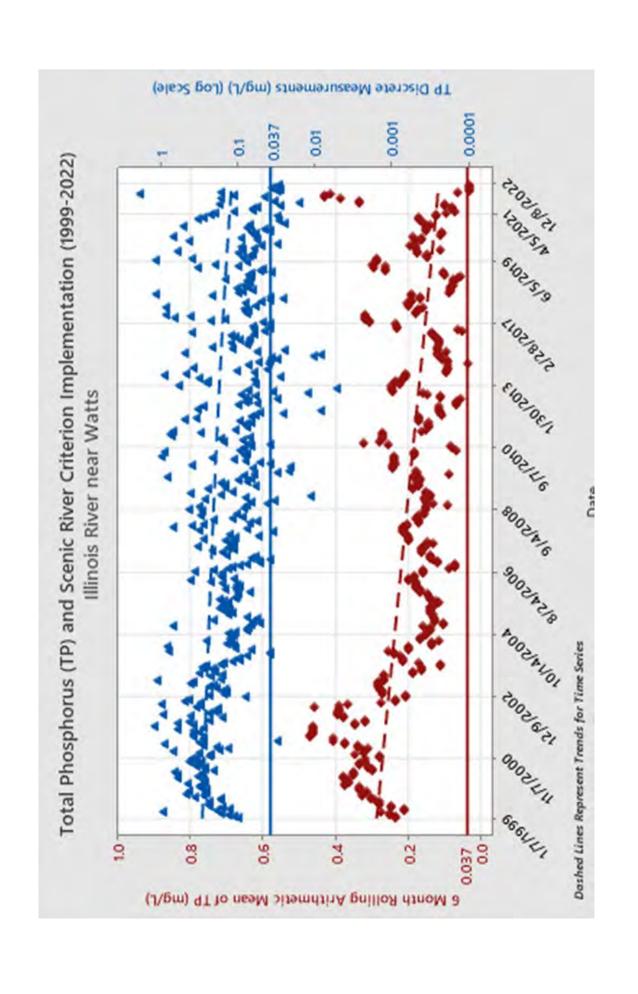

Water Quality Monitoring Report for the Illinois River Basin Arkansas – Oklahoma Compact

CY 2022

Illinois River at Watts

III	inois Rive	Loadings		
V	Flow	Total P	Ortho P	Total P Ortho P
Year	(cfs)	(mg/L)	(mg/L)	kg/year kg/year
1000	172	0.422		65.370
1980	173	0.423		65,279
1981	260	0.190		44,119
1982	591			
1983	352			
1984	706			
1985	947			
1986	879			
1987	815			
1988	531	0.040	0.450	104 650 74 750
1989	558	0.210	0.150	104,653 74,752
1990	1,127	0.181	0.118	182,432 118,266
1991	724	0.162	0.090	104,534 58,194
1992	760	0.161	0.127	109,571 86,299
1993	1,163	0.277	0.176	287,317 182,313
1994	674	0.168	0.128	101,127 77,049
1995	783	0.143	0.130	100,233 90,909
1996	693	0.188	0.192	116,542 118,628
1997	573	0.163	0.120	83,415 61,410
1998	713	0.138	0.120	87,876 76,414
1999	793	0.250	0.145	177,057 102,693
2000	648	0.309	0.227	178,827 131,371
2001	649	0.346	0.233	200,549 135,052
2002	619	0.316	0.173	174,694 95,639
2003	347	0.155	0.176	48,035 54,543
2004	688	0.104		63,903
2005	459	0.106		43,453
2006	349	0.116		36,156
2007	464	0.106		43,926
2008	1177	0.068		71,480
2009	915	0.069		56,386
2010	587	0.057		29,882
2011	1101	0.081		79,648
2012	336	0.052		15,594
2013	642	0.082		46,994
2014	448	0.056		22,412
2015	1364	0.061		74,303
2016	434	0.065		25,189
2017	918	0.064		52,481
2018	715	0.066		42,126
2019	1511	0.071		95,806
2020	1116	0.050		49,832
2021	964	0.051		43,912
2022	1057	0.057		53,791
Average	728	0.143	0.154	93,283 99,917


Illinois River at Watts								
Year	Pt (mg/l)	Flow (cfs)	Pt (kg/yr)	% Decrease				
1980-1993	0.204	685	124,832	0.0%				
1990-1994	0.198	890	157,569	-26.2%				
1991-1995	0.201	821	147,520	-18.2%				
1992-1996	0.210	815	153,006	-22.6%				
1993-1997	0.200	777	138,508	-11.0%				
1994-1998	0.162	687	99,241	20.5%				
1995-1999	0.195	711	123,581	1.0%				
1996-2000	0.221	684	134,986	-8.1%				
1997-2001	0.249	675	149,927	-20.1%				
1998-2008	0.275	684	167,987	-34.6%				
1999-2003	0.271	611	148,151	-18.7%				
2000-2004	0.246	590	129,533	-3.8%				
2001-2005	0.203	552	100,347	19.6%				
2002-2006	0.158	492	69,482	44.3%				
2003-2007	0.118	461	48,448	61.2%				
2004-2008	0.102	627	56,951	54.4%				
2005-2009	0.095	673	57,272	54.1%				
2006-2010	0.085	698	53,127	57.4%				
2007-2011	0.077	849	58,493	53.1%				
2008-2012	0.065	823	47,682	61.8%				
2009-2013	0.068	716	43,412	65.2%				
2010-2014	0.065	623	35,998	71.2%				
2011-2015	0.068	778	47,254	62.1%				
2012-2016	0.062	690	38,292	69.3%				
2013-2017	0.065	761	44,029	64.7%				
2014-2018	0.061	776	42,044	66.3%				
2015-2019	0.065	988	57,100	54.3%				
2016-2020	0.063	939	52,558	57.9%				
2017-2021	0.062	1045	57,816	53.7%				
2018-2022	0.060	1072	57,599	53.9%				


NOTES : Flow & Water quality data provided by USGS Oklahoma District

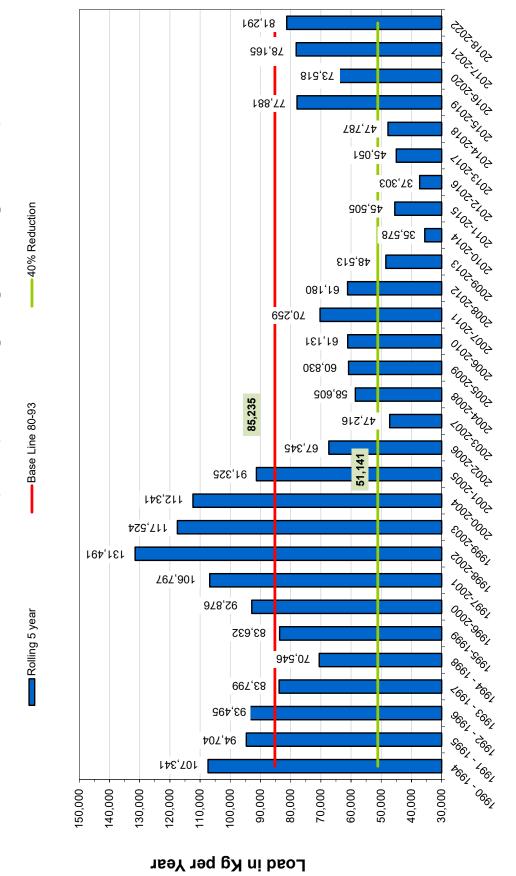
 $^{^{\}star}$ WQ data from 1999 to the present also includes data routinely collected by the OWRB

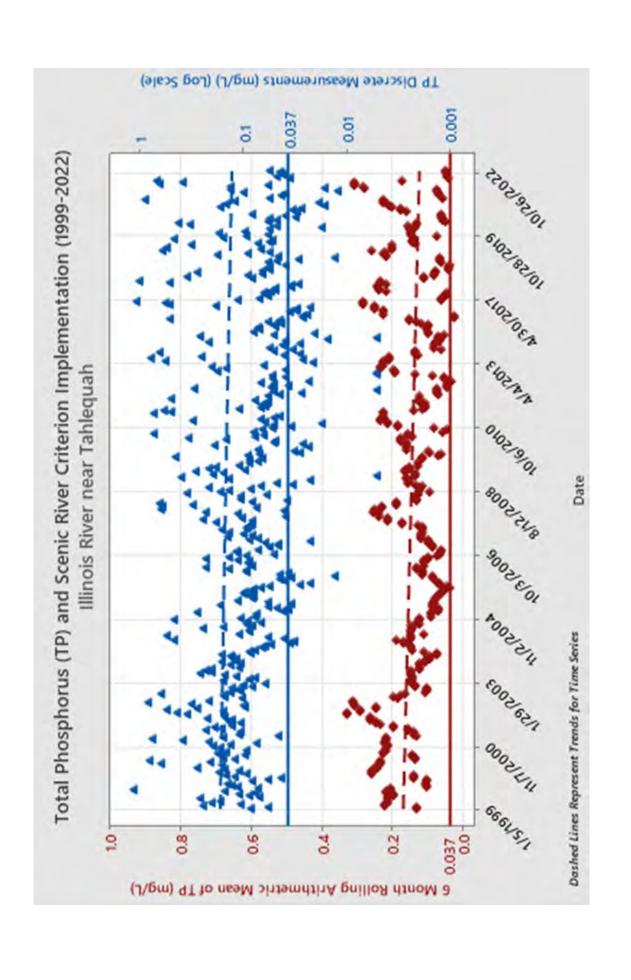
 $[\]mbox{\ensuremath{^{\star}}}\mbox{\ensuremath{^{Values}}}\mbox{\ensuremath{^{tensuremath{^{\prime}}}}}\mbox{\ensuremath{^{\prime}}}\mbox{\$

Illinois River near Watts (excluding targeted high flows)

Illinois River near Tahlequah

Illinois	River N		Load	ıngs		
	Flow		Ortho P		Total P	Ortho P
Year	(cfs)	(mg/L)	(mg/L)		kg/year	kg/year
1980	249			Ť		


	Flow	Total P	Ortho P	Total P	Ortho P
Year	(cfs)	(mg/L)	(mg/L)	kg/year	kg/year
1000	249				
1980					
1981	384				
1982	812				
1983	537				
1984	1,157				
1985	1,651				
1986	1,452				
1987	1,218				
1988	820				
1989	808				
1990	1,695	0.098	0.078	147,579	117,307
1991	1,094	0.079	0.044	76,796	43,285
1992	1,207	0.080	0.058	86,205	
1993	1,751	0.099	0.086	154,647	133,796
1994	1,071	0.084	0.068	80,223	64,768
1995	1,123	0.080	0.071	80,229	71,454
1996	938	0.085	0.092	71,207	76,792
1997	812	0.069	0.066	49,797	47,621
1998	1,044	0.081	0.075	75,524	69,930
1999	1,143	0.121	0.093	123,518	94,936
2000	1,083	0.136	0.111	131,543	107,362
2001	1,033	0.158	0.123	145,766	113,476
2002	851	0.211	0.151	160,366	114,764
2003	478	0.100	0.109	42,690	46,532
2004	1,157	0.075		77,499	
2005	712	0.060		38,148	
2006	426	0.074		28,154	
2007	736	0.066		43,383	
2008	1,839	0.062		101,829	
2009	1,407	0.072		90,475	
2010	819.8	0.050		36,608	
2011	1,540.8	0.058		79,813	
2012	491.8	0.038		16,689	
2013	946.1	0.043		36,331	
2014	659.4	0.038		22,378	
2015	2,174.6	0.041		79,628	
2016	700.6	0.050		31,286	
2017	1,219.7	0.050		54,465	
2018	987.2	0.054		47,610	
2019	2,308.0	0.100		206,129	
2020	1,670.3	0.047		70,112	
2021	1,362.4	0.030		36,502	
2022	1,577.6	0.040		56,359	
Average	1,096	0.077	0.087	74,999	85,609


Illinois River near Tahlequah								
Year	Pt (mg/l)	Pt (mg/l) Flow (cfs) Pt		% Decrease				
1980-1993	0.090	1060	85,235	0.0%				
1990-1994	0.088	1364	107,341	-25.9%				
1991-1995	0.085	1249	94,704	-11.1%				
1992-1996	0.086	1218	93,495	-9.7%				
1993-1997	0.082	1139	83,799	1.7%				
1994-1998	0.079	998	70,546	17.2%				
1995-1999	0.093	1012	83,632	1.9%				
1996-2000	0.104	1004	92,876	-9.0%				
1997-2001	0.117	1023	106,797	-25.3%				
1998-2008	0.143	1031	131,491	-54.3%				
1999-2003	0.143	918	117,524	-37.9%				
2000-2004	0.137	920	112,341	-31.8%				
2001-2005	0.121	846	91,325	-7.1%				
2002-2006	0.104	725	67,345	21.0%				
2003-2007	0.075	702	47,216	44.6%				
2004-2008	0.067	974	58,605	31.2%				
2005-2009	0.067	1024	60,830	28.6%				
2006-2010	0.065	1046	61,131	28.3%				
2007-2011	0.062	1269	70,259	17.6%				
2008-2012	0.056	1220	61,180	28.2%				
2009-2013	0.052	1041	48,513	43.1%				
2010-2014	0.046	1105	36,735	56.9%				
2011-2015	0.045	1163	46,721	45.2%				
2012-2016	0.042	994	37,303	56.2%				
2013-2017	0.044	1140	45,051	47.1%				
2014-2018	0.047	1148	47,787	43.9%				
2015-2019	0.059	1478	77,881	8.6%				
2016-2020	0.060	1377	73,518	13.7%				
2017-2021	0.058	1510	78,165	8.3%				
2018-2022	0.058	1581	81,291	4.6%				

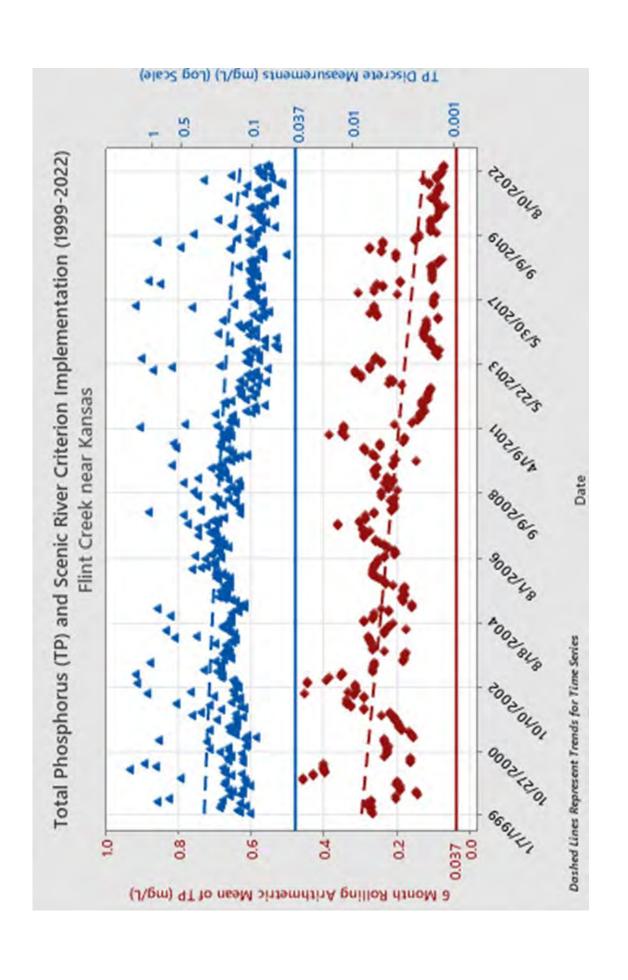
NOTES : Flow & Water quality data provided by USGS Oklahoma District

 $^{^{\}star}$ WQ data from 1999 to the present also includes data routinely collected by the OWRB Values represent data that is routinely collected and excludes targeted high flow events.

Illinois River near Tahlequah (excluding targeted high flows)

Flint Creek near Kansas

Flint Creek Near Kansas						dings
	Flow	Total P	Ortho P		Total P	Ortho P
Year	(cfs)	(mg/L)	(mg/L)		kg/year	kg/year
1980	32	0.189			5,454	
1981	57	0.178			9,077	
1982	69	0.186			11,537	
1983	49	0.284			12,415	
1984	143	0.240			30,532	
1985	237	0.224			47,591	
1986	183	0.223			36,430	
1987	141	0.157			19,840	
1988	97	0.265			22,946	
1989	90	0.557			44,981	
1990		0.114			0	
1991		0.114	0.100		0	
1991		0.120	0.100		0	
1993	182	0.116	0.113		25,359	21,869
1993	136	0.130	0.134		15,418	14,032
1994	140	0.127	0.116		23,207	16,308
1995	_		0.130		-	
	76	0.152	_		10,294	9,955
1997	95.7	0.117	0.115		9,964	9,829
1998	96.5	0.127	0.122		10,945	10,514
1999	137	0.186	0.151		22,758	18,476
2000	132	0.178	0.182		20,984	21,456
2001	101	0.164	0.129		14,793	11,636
2002	82	0.310	0.180		22,675	13,166
2003	49.8	0.316	0.189		14,055	8,406
2004	149.0	0.165			21,957	
2005	91.8	0.168			13,774	
2006	36.8	0.226			7,428	
2007	70.3	0.240			15,068	
2008	218.0	0.157			30,567	
2009	141.6	0.187			23,649	
2010	91.7	0.171			14,004	
2011	137.8	0.152			18,707	
2012	48.1	0.107			4,598	
2013	121.2	0.093			10,070	
2014	72.4	0.096			6,206	
2015	253.8	0.070			15,864	
2016	82.7	0.092			6,796	
2017	130.1	0.085			9,877	
2018	115.2	0.097			9,978	
2019	289.9	0.090			23,299	
2021	190.7	0.082			13,962	
2021	143.3	0.074			9,468	
2022	191.1	0.068			11,603	
Average	123	0.170	0.139		18,566	15,223
Average	123	0.170	0.133		10,500	13,223


	Flint C	reek near	Kansas	
Year	Pt (mg/l)	Flow (cfs)	Pt (kg/yr)	% Decrease
1980-1993	0.214	117	22,279	0.0%
1990-1994	0.132	159	18,758	15.8%
1991-1995	0.142	153	19,386	13.0%
1992-1996	0.146	134	17,369	22.0%
1993-1997	0.140	126	15,727	29.4%
1994-1998	0.133	109	12,986	41.7%
1995-1999	0.154	109	14,974	32.8%
1996-2000	0.157	107	15,100	32.2%
1997-2001	0.159	112	15,989	28.2%
1998-2008	0.196	110	19,224	13.7%
1999-2003	0.230	100	20,579	7.6%
2000-2004	0.228	103	20,963	5.9%
2001-2005	0.226	95	19,098	14.3%
2002-2006	0.238	82	17,415	21.8%
2003-2007	0.225	80	15,977	28.3%
2004-2008	0.191	113	19,356	13.1%
2005-2009	0.196	112	19,586	12.1%
2006-2010	0.199	112	19,818	11.0%
2007-2011	0.184	132	21,700	2.6%
2008-2012	0.154	127	17,473	21.6%
2009-2013	0.140	108	13,543	39.2%
2010-2014	0.121	94	10,154	54.4%
2011-2015	0.101	127	11,382	48.9%
2012-2016	0.090	118	9,516	57.3%
2013-2017	0.085	132	10,063	54.8%
2014-2018	0.086	131	10,069	54.8%
2015-2019	0.087	174	13,505	39.4%
2016-2020	0.089	162	12,821	42.5%
2017-2021	0.087	174	13,499	39.4%
2018-2022	0.085	186	14,077	36.8%

 ${\tt NOTES: Flow~\&~Water~quality~data~provided~by~USGS~Oklahoma~District}$

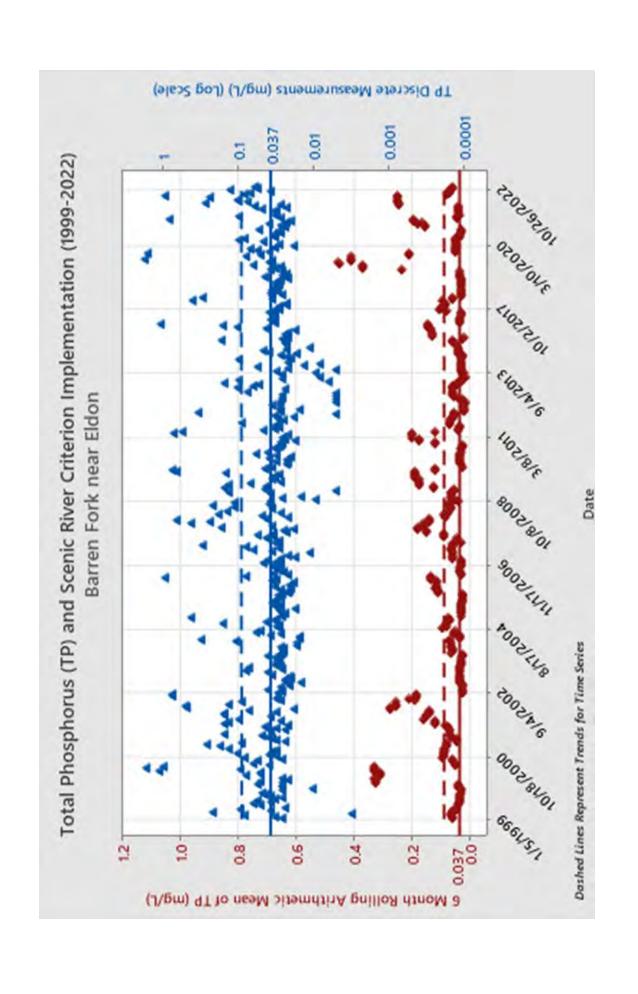
 $^{^{\}star}$ WQ data from 1999 to the present also includes data routinely collected by the OWRB

 $[\]mbox{\ensuremath{^{\star}}}$ Values represent data that is routinely collected and excludes targeted high flow events.

²202-8402 14,077 12021/104 13,499 Octobration 128,21 6102.5102 13,505 8105. 8105. 690'01 Flint Creek near Kansas (excluding targeted high flows) <102.5102 10,063 9102.2102 919'6 \$105. 1105 11,382 40% Reduction *102.0102 10,154 £102.6002 13,543 ÷102,8002 17,473 102.1002 21,700 0102.9002 818,91 6002-5002 989'61 13,367 22,279 8002. A00. 998,91 776,81 1002.5002 -Base Line 80-93 900×2004 314,71 5002,1002 860,61 *002.000s 20,963 ^E002-866/ 50,579 -00-00-000/ 19,224 1002 12,989 0002.9661 12,100 Rolling 5 year 666/ \$66/ 74⁶74 8661. 12,986 <66₁ 15,727 966₇ 47,369 \$661. 986,91 *GE/ OBE/ 887,81 11,000 9,000 25,000 21,000 19,000 17,000 15,000 13,000 23,000 Loads in Kg per Year

Barren Fork at Eldon

	Barren Fo	rk at Eldon			dings
	Flow	Total P	Ortho P	Total P	Ortho P
Year	(cfs)	(mg/L)	(mg/L)	kg/year	kg/year
1980	77				
1981	201				
1982	296				
1983	184				
1984	364				
1985	593				
1986	536				
1987	491				
1988	269				
1989	320				
1990	666				
1991	451	0.060	0.065	24,145	26,157
1992	440	0.095	0.056	37,315	21,996
1993	700	0.108	0.060	67,234	37,526
1994	328	0.037	0.023	10,878	6,694
1995	422	0.263	0.046	98,819	17,317
1996	432	0.025	0.033	9,645	12,861
1997	332	0.023	0.021	6,671	6,138
1998	409	0.033	0.028	12,054	10,228
1999	361	0.048	0.028	15,476	9,027
2000	376	0.043	0.045	14,440	15,111
2001	343	0.064	0.042	19,605	12,866
2002	262	0.088	0.053	20,591	12,402
2003	145	0.025	0.022	3,237	2,849
2004	403	0.029	0.022	10,438	2,0 .5
2005	228	0.027		5,498	
2006	169	0.027		4,075	
2007	254	0.027		-	
				5,898	
2008	559	0.045		22,466	
2009	460	0.033		13,557	
2010	225	0.027		5,426	
2011	471	0.028		11,783	
2012	130	0.019		2,201	
2013	219	0.026		5,083	
2014	184	0.024		3,938	
2015	872	0.040		31,154	
2016	214	0.033		6,309	
2017	320	0.028		8,013	
2018	318	0.029		8,225	
2019	761	0.038		25,816	
2020	549	0.031		15,194	
2021	392	0.025		8,747	
2022	479	0.051		21,816	
Average	377	0.047	0.040	15,741	13,511
Average	3//	0.047	0.040	13,741	13,311


	Barı	en Fork at E	Idon	
Year	Pt (mg/l)	Flow (cfs)	Pt (kg/yr)	% Decrease
1980-1993	0.093	399	33,001	0.0%
1990-1994	0.076	517	34,931	-5.8%
1991-1995	0.103	468	43,192	-30.9%
1992-1996	0.096	464	39,838	-20.7%
1993-1997	0.075	443	29,482	10.7%
1994-1998	0.056	384	19,163	41.9%
1995-1999	0.055	391	19,257	41.6%
1996-2000	0.039	382	13,163	60.1%
1997-2001	0.045	364	14,548	55.9%
1998-2008	0.056	350	17,603	46.7%
1999-2003	0.053	297	14,059	57.4%
2000-2004	0.050	306	13,685	58.5%
2001-2005	0.046	276	11,465	65.3%
2002-2006	0.039	241	8,500	74.2%
2003-2007	0.027	240	5,716	82.7%
2004-2008	0.030	323	8,574	74.0%
2005-2009	0.031	334	9,197	72.1%
2006-2010	0.031	333	9,335	71.7%
2007-2011	0.032	394	11,159	66.2%
2008-2012	0.030	369	9,837	70.2%
2009-2013	0.026	350	7,054	78.6%
2010-2015	0.025	350	5,400	83.6%
2011-2015	0.026	375	8,711	73.6%
2012-2016	0.027	323	7,831	76.3%
2013-2017	0.029	362	9,461	71.3%
2014-2018	0.030	382	10,241	69.0%
2015-2019	0.033	497	14,623	55.7%
2016-2020	0.031	432	12,130	63.2%
2017-2021	0.031	468	12,794	61.2%
2018-2022	0.034	500	15,189	54.0%

NOTES : Flow & Water quality data provided by USGS Oklahoma District

 $^{^{\}star}$ WQ data from 1999 to the present also includes data routinely collected by the OWRB

 $[\]mbox{\ensuremath{^{\star}}}$ Values represent data that is routinely collected and excludes targeted high flow events.

choragos 681[']91 1202/102 12,794 0202.9102 12,130 6105.5105 14,623 8102 B102 10,241 <102.E102 194'6 Barren Fork at Eldon (excluding targeted high flows) OLOZ ZLOZ 1,831 -40% Reduction Slos You 117,8 *102.0102 735,3 E102-E002 **⊅**90'∠ ²102.8002 758,6 102,1002 691'11 0102.9002 965,935 600,5004 6،۱6۲ -Base Line 80-93 8002.*A002 472,8 33,001 19,801 1002.E002 917,8 2002,2004 8,500 \$002.100¢ 994,11 *002,0002 13,685 £002.6661 ا⊄'90و 2002,8661 1۲,603 1002 14,548 Rolling 5 year 0002.9661 13,163 666/ \$66/ 192,91 Sol, Follow £91,61 <6_{6/} .€6_{6/} 284,62 `c₆₆, 888,68 \$6₆₁ 43,192 *GE/ OBE/ 166,46 10,000 5,000 000'09 55,000 50,000 45,000 40,000 35,000 30,000 25,000 20,000 15,000 Loads in Kg per Year

Funding for Cities and Districts In the Illinois River Basin Provided by the OWRB's Financial Assistance Program

Loan/Grant #	Community	County	Closed Amount	Approved Date	Арр Туре
FAP-83-0033-G	Cherry Tree Rural Water District	Adair	\$10,000.00	1/10/1984	Emergency
FAP-85-0129-G	Watts Public Works Authority	Adair	\$10,000.00	2/12/1985	Emergency
FAP-85-0155-G	Adair County RWS & SWMD #2	Adair	\$100,000.00	6/11/1985	Emergency
FAP-88-0053-G	Watts Public Works Authority	Adair	\$85,000.00	7/16/1990	Emergency
FAP-89-0062-G	Adair County Rural Water District #5	Adair	\$50,000.00	9/10/1991	Emergency
FAP-93-0073-L	Stilwell Area Development Authority	Adair	\$1,000,000.00	12/12/1995	FA Loan
FAP-97-0125-R	Watts Public Works Authority	Adair	\$149,750.00	2/10/1998	REAP
FAP-97-0124-R	Adair County Rural Water District #5	Adair	\$75,000.00	6/8/1999	REAP
ORF-98-0010-CW	Stilwell Area Development Authority	Adair	\$4,000,000.00	8/10/1999	CWSRF
FAP-99-0080-R	Watts Public Works Authority	Adair	\$99,800.00	11/16/1999	REAP
FAP-00-0058-R	Adair County Rural Water District #5	Adair	\$99,500.00	7/10/2001	REAP
ORF-99-0020-CW	Westville Utility Authority	Adair	\$430,400.00	12/11/2001	CWSRF
FAP-01-0013-L	Stilwell Area Development Authority	Adair	\$2,760,000.00	3/12/2002	FA Loan
FAP-00-0071-R	Adair County Rural Water District #6	Adair	\$146,875.00	4/9/2002	REAP
FAP-03-0019-R	Westville Utility Authority	Adair	\$99,969.00	6/14/2005	REAP
FAP-05-0013-G	Westville Utility Authority	Adair	\$100,000.00	10/11/2005	Emergency
FAP-06-0015-R	Adair County RWS & SWMD #2	Adair	\$99,999.00	3/11/2008	REAP
FAP-12-0006-L	Westville Utility Authority	Adair	\$1,350,000.00	3/13/2012	FA Loan
FAP-05-0051-R	Westville Utility Authority	Adair	\$0.00	7/16/2013	REAP
ORF-20-0013-CW	Westville Utility Authority	Adair	\$37,575.00	8/20/2019	CWSRF
FAP-18-0027-R	Westville Utility Authority	Adair	\$0.00	8/18/2020	REAP
ORF-21-0005-CW	Westville Utility Authority	Adair	\$109,395.26	8/18/2020	CWSRF
FAP-83-0019-G	Burnt Cabin Rural Water District Incorporated	Cherokee	\$24,000.00	11/2/1983	Emergency
FAP-83-0021-G	Cherokee County Rural Water District #8 Briggs	Cherokee	\$53,000.00	1/10/1984	Emergency
FAP-83-0044-G	Town of Hulbert	Cherokee	\$100,000.00	1/10/1984	Emergency
FAP-90-0055-G	Cherokee County Rural Water District #10	Cherokee	\$27,000.00	3/12/1991	Emergency
FAP-91-0057-G	Cherokee County Rural Water District #7	Cherokee	\$23,180.00	9/10/1991	Emergency
FAP-91-0058-G	Cherokee County Rural Water District #8 Briggs	Cherokee	\$23,180.00	9/10/1991	Emergency
FAP-85-0152-G	Cherokee County Rural Water District #9	Cherokee	\$13,465.00	10/16/1991	Emergency
FAP-91-0120-G	Hulbert Public Works Authority	Cherokee	\$25,000.00	9/15/1992	Emergency
FAP-95-0060-G	Cherokee County Rural Water District #13	Cherokee	\$100,000.00	1/9/1996	Emergency
FAP-95-0031-L	Cherokee County Rural Water District #13	Cherokee	\$170,000.00	1/9/1996	FA Loan
FAP-97-0126-R	Cherokee County Rural Water District #9	Cherokee	\$99,900.00	1/13/1998	REAP

FAP-98-0011-R	Burnt Cabin Rural Water District Incorporated	Cherokee	\$65,427.00	6/9/1998	REAP
FAP-98-0081-R	Cherokee County Rural Water District #14	Cherokee	\$54,000.00	2/10/1999	REAP
FAP-98-0052-G	Cherokee County Rural Water District #3	Cherokee	\$45,000.00	2/10/1999	Emergency
FAP-99-0082-R	Hulbert Public Works Authority	Cherokee	\$79,350.00	11/16/1999	REAP
FAP-97-0110-R	Cherokee County Rural Water District #1	Cherokee	\$100,000.00	12/14/1999	REAP
FAP-97-0098-R	Cherokee County Rural Water District #13	Cherokee	\$80,000.00	3/14/2000	REAP
FAP-99-0072-R	Cherokee County Rural Water District #9	Cherokee	\$69,900.00	11/14/2000	REAP
FAP-98-0029-L	Cherokee County Rural Water District #1	Cherokee	\$380,000.00	12/12/2000	FA Loan
FAP-00-0007-L	Cherokee County Rural Water District #13	Cherokee	\$1,810,000.00	6/11/2002	FA Loan
FAP-02-0001-L	Cherokee County Rural Water District #8 Briggs	Cherokee	\$285,000.00	6/11/2002	FA Loan
FAP-01-0066-R	Hulbert Public Works Authority	Cherokee	\$99,000.00	7/9/2002	REAP
FAP-02-0004-L	Cherokee County Rural Water District #2	Cherokee	\$645,000.00	8/13/2002	FA Loan
FAP-02-0026-R	Cherokee County Rural Water District #13	Cherokee	\$135,000.00	6/8/2004	REAP
FAP-06-0011-R	Cherokee County Rural Water District #8 Briggs	Cherokee	\$99,999.00	6/12/2007	REAP
FAP-08-0033-R	Cherokee County Rural Water District #7	Cherokee	\$39,069.00	12/9/2008	REAP
FAP-08-0005-R	Cherokee County Rural Water District #12	Cherokee	\$70,000.00	6/9/2009	REAP
FAP-09-0011-G	Hulbert Public Works Authority	Cherokee	\$75,000.00	11/10/2009	Emergency
ORF-09-0040-DW	Tahlequah Public Works Authority	Cherokee	\$16,320,000.00	12/8/2009	DWSRF
FAP-09-0034-R	Cherokee County Rural Water District #8 Briggs	Cherokee	\$34,914.00	4/13/2010	REAP
ORF-11-0002-DW	Cherokee County Rural Water District #3	Cherokee	\$3,110,000.00	7/12/2011	DWSRF
ORF-11-0010-DW	Tahlequah Public Works Authority	Cherokee	\$1,680,000.00	12/13/2011	DWSRF
FAP-12-0010-L	Cherokee County Rural Water District #13	Cherokee	\$1,600,000.00	3/13/2012	FA Loan
FAP-12-0002-D	Cherokee County Rural Water District #3	Cherokee	\$26,870.00	9/18/2012	Drought
ORF-18-0017-DW	Tahlequah Public Works Authority	Cherokee	\$8,200,000.00	12/6/2018	DWSRF
ORF-19-0014-CW	Tahlequah Public Works Authority	Cherokee	\$6,750,000.00	12/5/2019	CWSRF
ORF-19-0002-DW	Cherokee County Rural Water District #11	Cherokee	\$1,575,000.00	2/16/2021	DWSRF

ORF-19-0002-DW	Cherokee County Rural Water District #11	Cherokee	\$1,575,000.00	2/16/2021	DWSRF
FAP-21-0017-R	Cherokee County Rural Water District #7	Cherokee	\$0.00	2/16/2021	REAP
FAP-21-0008-G	Cherokee County Rural Water District #13	Cherokee	\$0.00	4/20/2021	Emergency
ORF-21-0021-DW	Cherokee County Rural Water District #1	Cherokee	\$100,000.00	6/15/2021	DWSRF
FAP-83-0027-G	Town of Drumright	Creek	\$100,000.00	1/10/1984	Emergency
FAP-83-0075-G	City of Oilton	Creek	\$28,420.00	4/10/1984	Emergency
FAP-85-0131-G	Town of Drumright	Creek	\$76,000.00	5/14/1985	Emergency
FAP-85-0127-G	Creek County RWS & SWMD #79-1	Creek	\$100,000.00	10/8/1985	Emergency
FAP-85-0208-G	Creek County Rural Water District #9	Creek	\$90,800.00	8/12/1986	Emergency
FAP-85-0181-G	Shamrock Public Works Authority	Creek	\$60,000.00	3/16/1987	Emergency
FAP-87-0148-L	Sapulpa Municipal Authority	Creek	\$7,250,000.00	9/14/1988	FA Loan
FAP-90-0057-G	Kiefer Public Works Authority	Creek	\$11,000.00	8/14/1990	Emergency
FAP-90-0097-G	Creek County Rural Water District #10	Creek	\$40,000.00	12/8/1992	Emergency
FAP-93-0047-L	Creek County Rural Water District #1	Creek	\$2,255,000.00	1/11/1994	FA Loan
ORF-94-0008-CW	Kiefer Public Works Authority	Creek	\$320,000.00	9/12/1995	CWSRF
FAP-96-0132-R	Town of Depew	Creek	\$59,000.00	1/14/1997	REAP
FAP-96-0186-R	Town of Mounds	Creek	\$55,200.00	4/8/1997	REAP
FAP-97-0108-R	Keystone Development Authority	Creek	\$79,000.00	1/12/1999	REAP
FAP-98-0094-R	Depew Public Works Authority	Creek	\$79,000.00	11/16/1999	REAP
ORF-99-0002-DW	Creek County Rural Water District #7	Creek	\$615,000.00	2/8/2000	DWSRF
FAP-98-0093-R	Depew Public Works Authority	Creek	\$38,000.00	3/14/2000	REAP
FAP-00-0007-G	Creek County Rural Water District #11	Creek	\$100,000.00	6/13/2000	Emergency
FAP-99-0001-L	Creek County Rural Water District #2	Creek	\$1,345,000.00	10/10/2000	FA Loan
FAP-00-0062-R	Kiefer Public Works Authority	Creek	\$150,000.00	4/10/2001	REAP
FAP-03-0035-R	Olive Public School	Creek	\$50,000.00	12/13/2005	REAP
ORF-08-0004-DW	Creek County Rural Water District #7	Creek	\$3,230,000.00	8/12/2008	DWSRF
FAP-08-0023-R	Kellyville Public Works Authority	Creek	\$99,990.00	7/14/2009	REAP
FAP-09-0013-R	City of Oilton	Creek	\$78,400.00	7/13/2010	REAP
FAP-11-0023-R	Slick Public Works Authority	Creek	\$81,825.00	7/17/2012	REAP
FAP-11-0015-R	Depew Public Works Authority	Creek	\$0.00	7/16/2013	REAP
ORF-13-0012-CW	Oilton Public Works Authority	Creek	\$2,850,000.00	8/20/2013	CWSRF
ORF-14-0006-CW	Kiefer Public Works Authority	Creek	\$320,000.00	12/17/2013	CWSRF
FAP-16-0003-G	Depew Public Works Authority	Creek	\$0.00	9/20/2016	Emergency
ORF-18-0020-CW	Sapulpa Municipal Authority	Creek	\$7,850,000.00	5/15/2018	CWSRF
ORF-21-0030-CW	Bristow Municipal Authority	Creek	\$9,100,000.00	10/20/2020	CWSRF
ORF-21-0030-CWA	Bristow Municipal Authority	Creek	\$2,575,000.00	6/21/2022	CWSRF
FAP-83-0080-G	Cherokee Housing Authority	Delaware	\$64,000.00	1/10/1984	Emergency

FAP-83-0012-G	Town of Kansas	Delaware	\$92,516.00	3/13/1984	Emergency
FAP-84-0015-G	Town of Colcord	Delaware	\$95,816.00	4/10/1984	Emergency
FAP-84-0059-G	West Siloam Springs	Delaware	\$100,000.00	6/10/1986	Emergency
FAP-85-0229-G	Delaware County Rural Water District #1	Delaware	\$63,000.00	9/8/1987	Emergency
FAP-86-0002-G	Kansas Public Works Authority	Delaware	\$65,000.00	1/12/1988	Emergency
FAP-90-0086-G	Delaware County Rural Water District #3	Delaware	\$34,300.00	5/6/1991	Emergency
FAP-92-0019-G	Delaware County RWSG & SWMD #6	Delaware	\$75,000.00	4/12/1994	Emergency
FAP-92-0079-G	Delaware County Rural Water District #7	Delaware	\$25,000.00	7/12/1994	Emergency
FAP-94-0013-G	West Siloam Springs	Delaware	\$18,315.00	7/12/1994	Emergency
FAP-96-0028-G	Delaware County RWSG & SWMD #9	Delaware	\$100,000.00	8/13/1996	Emergency
FAP-96-0009-L	Delaware County RWSG & SWMD #9	Delaware	\$635,000.00	8/13/1996	FA Loan
FAP-95-0053-G	Delaware County RWSG & SWMD #6	Delaware	\$100,000.00	10/8/1996	Emergency
FAP-97-0068-R	Delaware County RWSG & SWMD #9	Delaware	\$10,000.00	5/13/1997	REAP
FAP-96-0020-G	Delaware County Rural Water District #1	Delaware	\$85,000.00	7/8/1997	Emergency
FAP-97-0008-L	Delaware County Rural Water District #1	Delaware	\$360,000.00	7/8/1997	FA Loan
FAP-97-0044-L	Grand Lake Public Works Authority	Delaware	\$655,000.00	12/9/1997	FA Loan
FAP-97-0040-R	Kansas Public Works Authority	Delaware	\$139,270.00	3/10/1998	REAP
FAP-98-0017-G	Moseley School District 34	Delaware	\$46,750.00	6/9/1998	Emergency
FAP-97-0107-R	Colcord Public Works Authority	Delaware	\$94,800.00	1/12/1999	REAP
FAP-99-0005-R	Grand Lake Public Works Authority	Delaware	\$94,000.00	4/13/1999	REAP
FAP-97-0097-R	Kansas Public Works Authority	Delaware	\$109,500.00	11/16/1999	REAP
FAP-98-0044-R	West Siloam Springs	Delaware	\$96,350.00	3/14/2000	REAP
ORF-99-0011-CW	Jay Utilities Authority	Delaware	\$3,766,000.00	8/8/2000	CWSRF
FAP-00-0010-L	Grand Lake Public Works Authority	Delaware	\$575,000.00	3/13/2001	FA Loan
ORF-99-0022-CW	Grand Lake Public Works Authority	Delaware	\$2,700,000.00	3/13/2001	CWSRF
FAP-97-0047-R	Delaware County Rural Water District #1	Delaware	\$50,000.00	11/13/2001	REAP
FAP-01-0008-L	West Siloam Springs Municipal Authority	Delaware	\$275,000.00	11/13/2001	FA Loan
FAP-97-0009-R	Bernice Public Works Authority	Delaware	\$99,500.00	12/11/2001	REAP
FAP-01-0016-L	Grand Lake Public Works Authority	Delaware	\$335,000.00	2/12/2002	FA Loan
ORF-99-0004-DW	Delaware County RWSG & SWMD #10	Delaware	\$4,865,193.00	4/9/2002	DWSRF
FAP-02-0003-R	Kansas Public Works Authority	Delaware	\$67,000.00	11/12/2002	REAP
ORF-02-0020-CW	Grand Lake Public Works Authority	Delaware	\$800,000.00	4/8/2003	CWSRF
ORF-02-0003-CW	Grove Municipal Services Authority	Delaware	\$7,500,000.00	6/10/2003	CWSRF
ORF-07-0004-DW	Jay Utilities Authority	Delaware	\$2,470,000.00	2/12/2008	DWSRF

FAP-07-0034-R	Delaware County RWSG & SWMD #10	Delaware	\$98,653.20	5/14/2008	REAP
ORF-07-0008-CW	Grove Municipal Services Authority	Delaware	\$1,900,000.00	7/14/2009	CWSRF
ORF-09-0004-CW	Grand Lake Public Works Authority	Delaware	\$992,500.00	9/8/2009	CWSRF
FAP-09-0001-L	Grand Lake Public Works Authority	Delaware	\$1,990,000.00	9/8/2009	FA Loan
FAP-09-0013-G	Delaware County RWSG & SWMD #10	Delaware	\$19,125.00	1/12/2010	Emergency
FAP-04-0025-R	Delaware County RWSG & SWMD #11	Delaware	\$99,990.00	2/8/2011	REAP
ORF-11-0007-DW	Delaware County Rural Water District #1	Delaware	\$260,000.00	10/17/2011	DWSRF
FAP-12-0016-L	Grand Lake Public Works Authority	Delaware	\$1,000,000.00	7/17/2012	FA Loan
ORF-11-0003-DW	Grand Lake Public Works Authority	Delaware	\$5,500,000.00	7/17/2012	DWSRF
ORF-13-0007-DW	Grove Municipal Services Authority	Delaware	\$8,765,000.00	3/19/2013	DWSRF
FAP-08-0004-R	Oaks Public Works Authority	Delaware	\$0.00	6/18/2013	REAP
ORF-14-0003-DW	Delaware County RWSG & SWMD #11	Delaware	\$950,000.00	4/15/2014	DWSRF
FAP-13-0014-R	Colcord Public Works Authority	Delaware	\$0.00	7/15/2014	REAP
FAP-17-0006-L	Delaware County Rural Water District #3	Delaware	\$1,040,000.00	1/17/2017	FA Loan
ORF-16-0004-DW	South Delaware County Regional Water Authority	Delaware	\$3,000,000.00	4/18/2017	DWSRF
ORF-17-0018-CW	Grand Lake Public Works Authority	Delaware	\$1,825,182.60	6/20/2017	CWSRF
FAP-18-0003-L	Grand Lake Public Works Authority	Delaware	\$1,390,000.00	11/1/2017	FA Loan
ORF-17-0007-DW	Grand Lake Public Works Authority	Delaware	\$700,000.00	2/20/2018	DWSRF
ORF-18-0007-DW	Jay Utilities Authority	Delaware	\$1,031,000.00	5/15/2018	DWSRF
ORF-21-0027-CW	Grove Municipal Services Authority	Delaware	\$5,350,000.00	9/15/2020	CWSRF
FAP-83-0003-G	Town of Boynton	Muskogee	\$27,695.00	8/12/1983	Emergency
FAP-83-0091-G	Town of Taft	Muskogee	\$86,620.00	1/10/1984	Emergency
FAP-83-0041-G	Muskogee County Rural Water District #7	Muskogee	\$90,000.00	4/10/1984	Emergency
FAP-84-0020-G	Town of Warner	Muskogee	\$100,000.00	5/8/1984	Emergency
FAP-86-0059-G	Muskogee County Rural Water District #3	Muskogee	\$50,000.00	12/13/1988	Emergency
FAP-88-0040-L	Porum Public Works Authority	Muskogee	\$730,000.00	1/10/1989	FA Loan
FAP-89-0016-L	Warner Utilities Authority	Muskogee	\$240,000.00	2/13/1990	FA Loan
FAP-90-0019-G	Oktaha Public Works Authority	Muskogee	\$19,700.00	4/10/1990	Emergency
FAP-90-0100-G	Braggs Public Works Authority	Muskogee	\$70,000.00	2/12/1991	Emergency
FAP-91-0040-G	Muskogee County Rural Water Management District #12	Muskogee	\$45,000.00	9/10/1991	Emergency
ORF-90-0004-CW	Muskogee Municipal Authority	Muskogee	\$11,553,000.00	2/11/1992	CWSRF
FAP-93-0005-L	Fort Gibson Utilities Authority	Muskogee	\$820,000.00	3/9/1993	FA Loan
ORF-93-0001-L	Muskogee Municipal Authority	Muskogee	\$3,670,000.00	3/9/1993	FA Loan
ORF-93-0001-CW	Muskogee Municipal Authority	Muskogee	\$2,141,969.36	3/9/1993	CWSRF

FAP-91-0047-G	Boynton Public Works Authority	Muskogee	\$50,000.00	2/8/1994	Emergency
FAP-92-0038-G	Muskogee County Rural Water District #6	Muskogee	\$25,000.00	4/12/1994	Emergency
ORF-94-0011-CW	Muskogee Municipal Authority	Muskogee	\$2,479,230.64	7/12/1994	CWSRF
ORF-94-0011-L	Muskogee Municipal Authority	Muskogee	\$4,390,000.00	7/12/1994	FA Loan
FAP-94-0042-L	Porum Public Works Authority	Muskogee	\$350,000.00	11/1/1994	FA Loan
FAP-96-0077-R	Town of Braggs	Muskogee	\$36,995.00	1/14/1997	REAP
ORF-96-0017-CW	Muskogee Municipal Authority	Muskogee	\$14,112,000.00	2/11/1997	CWSRF
FAP-97-0021-R	East Central Oklahoma Water Authority	Muskogee	\$59,700.00	3/11/1997	REAP
FAP-96-0051-L	Warner Utilities Authority	Muskogee	\$435,000.00	4/8/1997	FA Loan
FAP-97-0064-R	Muskogee County Rural Water District #3	Muskogee	\$65,800.00	5/13/1997	REAP
FAP-95-0064-L	Muskogee County Rural Water District #1	Muskogee	\$430,000.00	8/12/1997	FA Loan
FAP-96-0045-G	East Central Oklahoma Water Authority	Muskogee	\$97,750.00	4/14/1998	Emergency
ORF-97-0011-CW	Fort Gibson Utilities Authority	Muskogee	\$445,100.00	5/12/1998	CWSRF
ORF-98-0004-L	Muskogee Municipal Authority	Muskogee	\$5,850,000.00	6/9/1998	FA Loan
ORF-98-0004-CW	Muskogee Municipal Authority	Muskogee	\$3,480,000.00	6/9/1998	CWSRF
FAP-98-0049-G	Town of Council Hill	Muskogee	\$100,000.00	3/9/1999	Emergency
ORF-99-0007-CW	Muskogee Municipal Authority	Muskogee	\$1,970,765.66	6/8/1999	CWSRF
ORF-99-0007-L	Muskogee Municipal Authority	Muskogee	\$3,335,000.00	6/8/1999	FA Loan
ORF-96-0022-CW	Warner Utilities Authority	Muskogee	\$258,000.00	8/10/1999	CWSRF
ORF-99-0015-CW	Haskell Public Works Authority	Muskogee	\$320,000.00	12/14/1999	CWSRF
ORF-99-0017-CW	Fort Gibson Utilities Authority	Muskogee	\$710,000.00	3/14/2000	CWSRF
FAP-98-0014-R	Muskogee County Rural Water District #3	Muskogee	\$91,992.00	6/13/2000	REAP
FAP-00-0006-G	Warner Utilities Authority	Muskogee	\$45,000.00	6/13/2000	Emergency
FAP-00-0060-R	Muskogee County Rural Water District #11	Muskogee	\$150,000.00	12/12/2000	REAP
FAP-00-0032-G	Boynton Public Works Authority	Muskogee	\$81,591.00	1/9/2001	Emergency
FAP-01-0075-R	Muskogee County Rural Water District #14	Muskogee	\$150,000.00	8/31/2001	REAP
FAP-02-0001-G	Muskogee County Rural Water District #3	Muskogee	\$91,035.00	3/12/2002	Emergency
FAP-02-0058-R	Muskogee County Rural Water District #10	Muskogee	\$99,999.00	4/8/2003	REAP
FAP-02-0011-L	Muskogee County Rural Water District #5	Muskogee	\$1,390,000.00	5/13/2003	FA Loan
FAP-03-0005-L	Muskogee Municipal Authority	Muskogee	\$4,575,000.00	6/10/2003	FA Loan
FAP-02-0011-G	Muskogee County Rural Water District #5	Muskogee	\$100,000.00	6/8/2004	Emergency
FAP-04-0064-R	Town of Taft	Muskogee	\$99,557.68	1/11/2005	REAP

ORF-08-0007-DW	Muskogee Municipal Authority	Muskogee	\$30,410,000.00	7/8/2008	DWSRF
ORF-09-0020-CW	Muskogee Municipal Authority	Muskogee	\$1,435,000.00	8/11/2009	CWSRF
FAP-10-0001-G	Town of Boynton	Muskogee	\$13,607.53	3/9/2010	Emergency
FAP-05-0023-R	Muskogee County Rural Water District #3	Muskogee	\$99,999.00	6/8/2010	REAP
ORF-11-0004-CW	Fort Gibson Utilities Authority	Muskogee	\$980,000.00	4/12/2011	CWSRF
ORF-11-0008-CW	Muskogee Municipal Authority	Muskogee	\$12,775,000.00	8/9/2011	CWSRF
ORF-14-0012-CW	Muskogee Municipal Authority	Muskogee	\$7,300,000.00	12/17/2013	CWSRF
FAP-14-0012-R	Porum Public Works Authority	Muskogee	\$0.00	12/16/2014	REAP
ORF-17-0008-CW	Porum Public Works Authority	Muskogee	\$780,000.00	9/20/2016	CWSRF
ORF-17-0014-CW	Muskogee Municipal Authority	Muskogee	\$110,000.00	2/21/2017	CWSRF
ORF-17-0019-CW	Muskogee Municipal Authority	Muskogee	\$27,360,000.00	4/18/2017	CWSRF
FAP-17-0008-L	Muskogee County Rural Water District #3	Muskogee	\$1,595,000.00	5/16/2017	FA Loan
ORF-18-0016-CW	Porum Public Works Authority	Muskogee	\$496,117.00	11/1/2017	CWSRF
ORF-18-0016-CW	Porum Public Works Authority	Muskogee	\$496,117.00	11/1/2017	CWSRF
FAP-17-0047-R	East Central Oklahoma Water Authority	Muskogee	\$0.00	8/21/2018	REAP
ORF-18-0012-DW	Muskogee Municipal Authority	Muskogee	\$17,640,000.00	10/16/2018	DWSRF
ORF-18-0012-DW	Muskogee Municipal Authority	Muskogee	\$17,640,000.00	10/16/2018	DWSRF
FAP-19-0012-R	Porum Public Works Authority	Muskogee	\$0.00	6/18/2019	REAP
FAP-19-0009-G	East Central Oklahoma Water Authority	Muskogee	\$0.00	8/20/2019	Emergency
ORF-20-0015-DW	East Central Oklahoma Water Authority	Muskogee	\$1,000,000.00	8/20/2019	DWSRF
ORF-20-0015-DW	East Central Oklahoma Water Authority	Muskogee	\$1,000,000.00	8/20/2019	DWSRF
ORF-20-0011-CW	East Central Oklahoma Water Authority	Muskogee	\$36,130.00	12/5/2019	CWSRF
FAP-20-0008-R	Taft Public Works Authority	Muskogee	\$0.00	5/19/2020	REAP
FAP-21-0001-G	East Central Oklahoma Water Authority	Muskogee	\$0.00	9/15/2020	Emergency
FAP-21-0002-G	Boynton Public Works Authority	Muskogee	\$0.00	10/20/2020	Emergency
ORF-21-0016-CW	East Central Oklahoma Water Authority	Muskogee	\$439,500.00	5/18/2021	CWSRF
ORF-21-0016-CW	East Central Oklahoma Water Authority	Muskogee	\$439,500.00	5/18/2021	CWSRF
FAP-17-0008-L	Muskogee County Rural Water District #3	Muskogee	\$1,595,000.00	6/16/2021	Interest Earning
FAP-83-0024-G	Sequoyah County RWS & SWMD #4	Sequoyah	\$86,000.00	1/10/1984	Emergency
FAP-83-0008-G	Town of Marble City	Sequoyah	\$100,000.00	2/14/1984	Emergency
FAP-84-0043-G	Town of Muldrow	Sequoyah	\$77,200.00	4/10/1984	Emergency
FAP-84-0067-G	Sequoyah County Rural Water District #3	Sequoyah	\$18,000.00	8/14/1984	Emergency

FAP-84-0090-G	Town of Gans	Sequoyah	\$100,000.00	5/14/1985	Emergency
FAP-89-0071-G	Utility Service Authority	Sequoyah	\$20,097.00	1/9/1990	Emergency
FAP-86-0050-G	Sequoyah County Rural Water District #5	Sequoyah	\$75,000.00	5/8/1990	Emergency
FAP-91-0069-G	Sequoyah County RWSG & SWMD #7	Sequoyah	\$30,000.00	12/8/1992	Emergency
FAP-95-0001-G	Roland Utility Authority	Sequoyah	\$75,000.00	5/14/1996	Emergency
FAP-95-0053-L	Roland Utility Authority	Sequoyah	\$4,890,000.00	4/8/1997	FA Loan
FAP-98-0013-R	Sequoyah County Rural Water District #5	Sequoyah	\$99,883.00	1/12/1999	REAP
FAP-99-0081-R	Vian	Sequoyah	\$59,500.00	11/16/1999	REAP
FAP-99-0083-R	Sequoyah County Rural Water District #8	Sequoyah	\$138,500.00	2/8/2000	REAP
ORF-98-0017-CW	Vian Public Works Authority	Sequoyah	\$1,100,000.00	2/8/2000	CWSRF
FAP-01-0005-R	Gore Public Works Authority	Sequoyah	\$60,000.00	11/13/2001	REAP
FAP-02-0025-G	Sequoyah County Rural Water District #5	Sequoyah	\$49,384.91	11/12/2002	Emergency
FAP-97-0089-R	Vian Public Works Authority	Sequoyah	\$150,000.00	6/10/2003	REAP
FAP-02-0064-R	Town of Gans	Sequoyah	\$110,000.00	4/16/2006	REAP
FAP-07-0006-G	Vian Public Works Authority	Sequoyah	\$75,000.00	1/8/2008	Emergency
ORF-08-0003-CW	Roland Utility Authority	Sequoyah	\$3,855,000.00	6/10/2008	CWSRF
ORF-09-0034-DW	Sallisaw Municipal Authority	Sequoyah	\$5,360,000.00	11/10/2009	DWSRF
FAP-10-0004-R	Vian Public Works Authority	Sequoyah	\$99,999.00	2/8/2011	REAP
FAP-01-0067-R	Sequoyah County Rural Water District #5	Sequoyah	\$80,000.00	7/12/2011	REAP
ORF-11-0007-CW	Muldrow Public Works Authority	Sequoyah	\$3,705,000.00	9/13/2011	CWSRF
FAP-12-0001-L	Roland Utility Authority	Sequoyah	\$3,360,000.00	2/13/2012	FA Loan
ORF-11-0006-CW	Vian Public Works Authority	Sequoyah	\$1,655,000.00	2/13/2012	CWSRF
FAP-03-0003-R	Sequoyah County RWS & SWMD #4	Sequoyah	\$99,950.00	3/13/2012	REAP
ORF-16-0003-DW	Gore Public Works Authority	Sequoyah	\$885,000.00	10/12/2016	DWSRF
ORF-20-0019-CW	Roland Utility Authority	Sequoyah	\$740,000.00	10/15/2019	CWSRF
ORF-20-0021-DW	Roland Utility Authority	Sequoyah	\$2,359,000.00	1/21/2020	DWSRF

PERMITS FOR WATER RIGHTS ISSUED BY OWRB'S WATER RIGHTS ADMINISTRATION DIVISION

Permits for Water Rights in the Illinois River Watershed Issued by the OWRB's Water Rights Administration Division in CY 2022

		ă.	ermits Issues v	vithin the l	llinois River B	iver Basin for Ca	lendar Year 2021	2021							
Diversion	Diversi	Diversi	Diversi	- - -	ᄛ	nt Legal									
LAST NAME 1/4 1/4	1/4	_	1/4	` .	1/4	SECT	d M	RNG	WATER TYPE	COUNTY	VATER TYPE COUNTY STREAM SYSYTEM D	DATE FILED	DATE FILED DATE ISSUED	PURPOSE	AMT (af/yr)
Keen Garlin SW NE S	SW				×	5	NT	2461	Surface	Adair		9/27/2021	3/1/2022	Agriculture	5.5

OKLAHOMA CONSERVATION COMMISSION

Program Activities in the Arkansas/Oklahoma Compact Commission Area for the period of October 2022 through September 2023

For over thirty years the Oklahoma Conservation Commission (OCC) has monitored water quality, implemented best management practices, and provided water quality education in the Arkansas/Oklahoma Compact Commission area. Resource protection in the area continues to be a priority which challenges the OCC and partners to bring funding, partnerships, and solutions to the area. Some of the OCC ongoing activities are summarized below.

1) Illinois River Riparian Protection

- a) Although the OCC no longer participates in the Conservation Reserve Enhancement Program (CREP), the Farm Services Agency continues landowner payments for easements protecting acres of riparian area in the Illinois River watershed. CREP provides these incentives to farmers and ranchers to remove streamside pasture or cropland from production activities for ten to fifteen years. The annual rental payment they receive for the ten/fifteen-year period is based on the average area rental rate for marginal pastureland.
- b) To support the CREP program and enroll landowners who were not CREP eligible, the OCC created long term easements with landowners to exclude their riparian property from production, further lessening the amount of pollution entering the river. Beginning in 2007, OCC began enrolling landowners in 10–15 year agreements and ultimately enrolled 51 landowners and 2,182 acres. Some of those agreements have since been closed, either by reaching the agreement end date or due to enrollment in additional easement programs. Currently 20 participants remain enrolled with 1,093 acres that are protected at an annual cost of \$66,601.50.

c) With EPA funding OCC, contracted a study in the Tyner Creek watershed of the Illinois River watershed to determine which would better benefit the area: streambank stabilization or riparian easements. Easements proved to be the better use of funding. OCC originally partnered with the Oklahoma Scenic Rivers Commission (OSRC) in 2007 when OSRC, now part of the Grand River Dam Authority (GRDA), enrolled 414.59 acres in 30year riparian protection easements. Many of these landowners were ineligible for CREP because they had previously enrolled in 3-5 year riparian protection agreements with local conservation districts as part of a 2000-2005 OCC project. For the 2007 program, OSRC utilized EPA 319 funding from OCC plus funding from the poultry industry to fund this \$665,916.70 worth of agreements, the majority of which will be in place until 2037. In partnership with the GRDA the OCC has made an additional \$3,600,000 available for long-term riparian easement protection along the Illinois River and in the Grand Lake Watershed, with \$500,000 of those dollars added in 2022 to focus on new enrollments in the Illinois River Watershed. These riparian exclusions are funded primarily with U.S. EPA §319 dollars. GRDA also received support from the Oklahoma Office of Secretary of Environment for an additional \$584,183 to add to this program. Currently, 1,621.97 acres are enrolled in this program in the Illinois River watershed, with an additional 450.96 acres enrolled in the Grand Lake Watershed. This is an increase from last year's enrollment of 31.79 acres in the Grand Lake Watershed. GRDA is currently enrolling \$500,000 worth of agreements in the Illinois River Watershed. Between the two programs, Oklahoma currently has 2,714.97 acres enrolled in longterm riparian protection agreements (Figures 1 and 2).

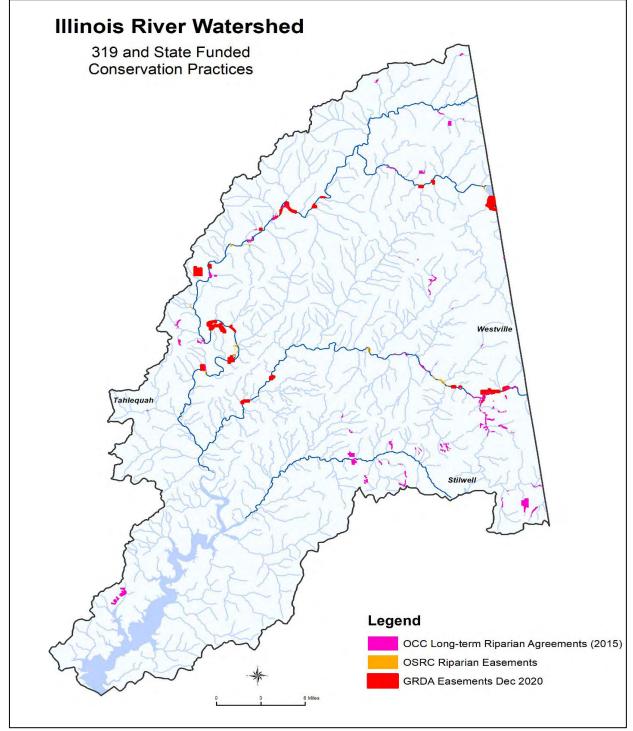


Figure 1. Long-term riparian easements in the Illinois River Watershed.

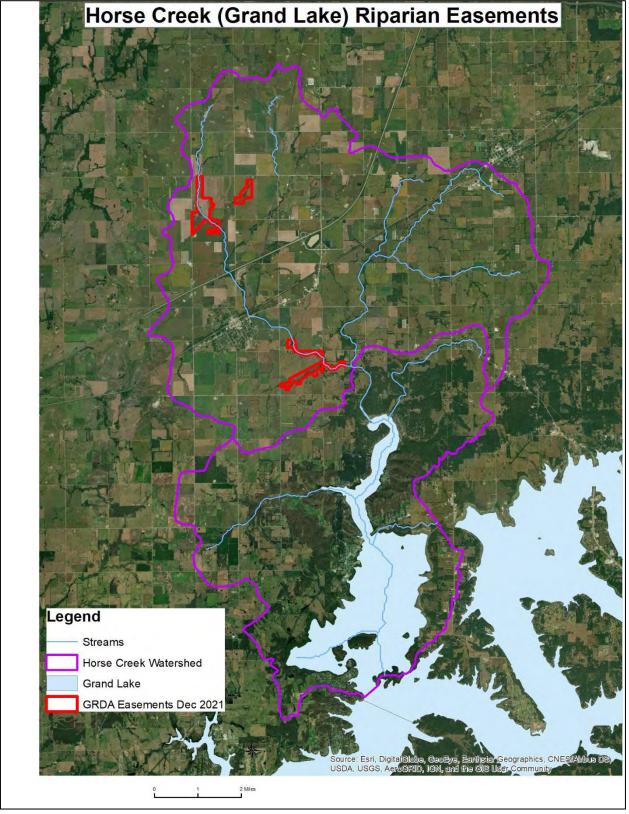


Figure 2. Long-term Easements in the Grand Lake Watershed.

2) Rotating Basin Monitoring Program

OCC currently monitors 26 sites in the compact commission area through the Rotating Basin Monitoring Program (RBMP) including eight sites in the Illinois River Watershed, seven sites in the Poteau River Watershed, six sites in the Robert S. Kerr Watershed, and five sites in the Dirty/Greenleaf Creeks Watershed (Figure 3). Through the RBMP, fish community surveys were completed in the summer of 2023 with assessment of those data pending. Macroinvertebrate collections were made at all sites in the summer of 2023, with additional collections scheduled for the winter of 2024, summer of 2024, and winter of 2025. Water quality monitoring is occurring on roughly pre-scheduled five-week intervals from May 2023 through April 2025. All RBMP sites are selected to represent Hydrologic Units (HUC 11) within planning basins to characterize water quality conditions and relate those conditions to manageable land units. Previous reports will be available at: https://conservation.ok.gov/wq-statewide-rotating-basin-monitoring-program/ under Group 3. Summaries of these monitoring stations from this previous monitoring cycle are included in this report following Figure 3. OCC will continue to evaluate monitoring results and needs in all planning basins and adjust monitoring efforts accordingly.

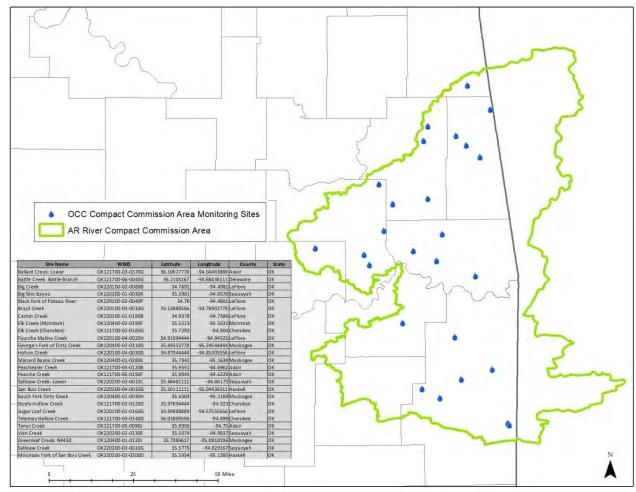


Figure 3. OCC Rotating Basin Monitoring Program Sites in the Compact Commission Area

Ballard Creek

Stream Summary

This leaflet provides an overview of the water quality of Ballard Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Chemistry	Fish	Bugs	Habitat	Final	Grade
0.69	0.86	0.76	1	0.83	В

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:

- Ballard Creek is not on the 303(d) list of impaired waterbodies for any measurement.
- •In our assessment, the bug assemblage was fair, which may be a result of high nutrients, salts and turbidity.
- Turbidity is impacted by sediment introduced to the stream from the watershed.
- Nutrients often enter streams attached to sediment but may also result from over-application of fertilizer and/or high densities of livestock in the watershed.
- *BMPs that reduce erosion (e.g., cover crops) and catch sediment before entering the stream (e.g., riparian plantings) can help improve turbidity, nutrients, and potentially bug communities. Alternative water supplies, riparian fencing and nutrient management planning can all also improve nutrients in streams.

Battle Creek

Stream Summary

This leaflet provides an overview of the water quality of Battle Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Water Chemistry	Fish	Bugs	Habitat	Final	Grade
0.81	0.98	0.9	1	0.92	Α

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:

- Battle Creek is not on the 303(d) list of impaired waterbodies for any measurement.
- In our assessment, both fish and bug assemblages were in good condition, but nutrient concentrations were high.
- •Nutrients may result from over-application of fertilizer and/or high densities of livestock in the watershed.
- Alternative water supplies, riparian planting, and riparian fencing, as well as nutrient management planning can all improve nutrients in streams.

Big Creek

Stream Summary

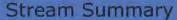
This leaflet provides an overview of the water quality of Big Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby highquality streams.

0.94	0.96	0.88	1	0.95	
Water Chemistry	Fish	Bugs	Habitat	Final	Grade

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify voluntary best-management practice (BMP) recommendations for the watershed that can help improve water quality:



- •Big Creek is on the 303(d) list of impaired waterbodies for bugs and pH.
- In our assessment, both fish and bug assemblages were in good condition, and were supported by good habitat and generally good water chemistry.
- Current bug community data indicates that the impairment may be improving, but more samples are needed to remove Big Creek from the impaired waterbody list.
- Low pH may be associated with acid rain from upwind industrial exhaust or drainage from upstream industrial or mining activities. However, in the Arkansas Valley some streams have naturally low pH as a result of regional geology.

Big Skin Bayou

This leaflet provides an overview of the water quality of Big Skin Bayou. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Water Chemistry	Fish	Bugs	Habitat	Final	Grade
1	1	0.88	1	0.97	A

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:



- Big Skin Bayou is not on the 303(d) list of impaired waterbodies for any measurement.
- In our assessment, both fish and bug assemblages were in good condition, and were supported by good habitat and good water chemistry.

Black Fork of the Poteau

This leaflet provides an overview of the water quality of Black Fork of the Poteau River. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Chemistry	Fish	Bugs	Habitat	Final	Grade
0.94	0.95	0.92	1	0.95	A

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:

- Black Fork of the Poteau River is on the 303(d) list of impaired water bodies for pH.
- •In our assessment, the fish and bug assemblages were in good condition, which was supported by good habitat and water chemistry.
- •In the Arkansas Valley, some streams have naturally low pH as a result of regional geology.
- Alternatively, low pH may be associated with acid rain from upwind industrial exhaust or drainage from upstream industrial or mining activities.

Brazil Creek

This leaflet provides an overview of the water quality of Brazil Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Chemistry 0.94	Fish	Bugs	Habitat	Final	Grade
		0.98		0.98	

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:


- Brazil Creek is not on the 303(d) list of impaired water bodies for any measurement.
- •In our assessment, the fish and bug assemblages were in good condition, which were supported by good habitat and water chemistry.

Caston Creek

This leaflet provides an overview of the water quality of Caston Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Water Chemistry	Fish	Bugs	Habitat	Final	Grade
0.94	1	1	1	0.98	A

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:

Caston Creek is not on the 303(d) list of impaired water bodies for any measurement.
 In our assessment, fish and bug assemblages were in good condition, which was supported by good habitat and good water quality.

Elk Creek

Stream Summary

This leaflet provides an overview of the water quality of Elk Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Water Chemistry	Fish	Bugs	Habitat	Final	Grade
0.88	0.77	0.78	1	0.86	В

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:

- *Elk Creek is on the 303(d) list of impaired water bodies for dissolved oxygen (DO).
- In our assessment, the fish and bug assemblages were fair, which may be a result of excess nutrients and low DO.
- DO impairments are often a result of excess nutrients in the stream and may result in the death of aquatic organisms.
- Nutrients may result from over-application of fertilizer and/or high densities of livestock in the watershed.
- •Alternative water supplies, riparian planting, riparian fencing and nutrient management planning can all improve nutrients, DO and potentially biological communities.

Elk Creek

Stream Summary

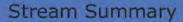
This leaflet provides an overview of the water quality of Elk Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Water Chemistry	Fish	Bugs	Habitat	Final	Grade
0.56	1	0.74	0.7	0.75	C

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:



- •Elk Creek is not on the 303(d) list of impaired water bodies for any measurement.
- •In our assessment, the bug assemblage was fair, which may be a result of marginal habitat, as well as degraded water quality. Nutrients and salts were elevated and pH was low.
- Nutrients may result from over-application of fertilizer and/or high densities of livestock in the watershed.
- *Alternative water supplies, riparian planting, riparian fencing and nutrient management planning can all also improve nutrients in streams, and potentially bug communities.
- Low pH may be associated with acid rain from upwind industrial exhaust or drainage from upstream industrial or mining activities.

Fourche Maline Creek

This leaflet provides an overview of the water quality of Fourche Maline Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Water Chemistry	Fish	Bugs	Habitat	Final	Grade
0.75	1	0.88	0.9	0.88	В

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:

- Fourche Maline Creek is on the 303(d) list of impaired water bodies for dissolved oxygen (DO) and pH.
- In our assessment, the fish and bug assemblages were good, despite high nutrients and low DO values.
- DO impairments are often a result of excess nutrients in the stream and may result in the death of aquatic organisms.
- Nutrients may result from over-application of fertilizer and/or high densities of livestock in the watershed.
- **Alternative water supplies, riparian planting, riparian fencing and nutrient management planning can all improve nutrients and DO
- Low pH may be associated with acid rain from upwind industrial exhaust or drainage from upstream industrial or mining activities.

George's Fork of Dirty Creek

This leaflet provides an overview of the water quality of George's Fork of Dirty Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Water Chemistry	Fish	Bugs	Habitat	Final	Grade
0.75	1	0.83	0.7	0.82	В

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:

- George's Fork is on the 303(d) list of impaired waterbodies for dissolved oxygen (DO).
- In our assessment, fish and bug assemblages were both good, despite fair habitat and low DO levels.
- DO impairments are often a result of excess nutrients in the stream and may result in the death of aquatic organisms.
- Nutrients may enter streams as a result of over-application of fertilizer and/or high densities of livestock in the watershed.
- Alternative water supplies, riparian plantings, riparian fencing and nutrient management planning can all improve nutrients in streams, and potentially DO levels.

Greenleaf Creek

Stream Summary

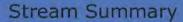
This leaflet provides an overview of the water quality of Greenleaf Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

0.94	0.94	0.74	1	0.9	Δ
Water Chemistry	Fish	Bugs	Habitat	Final	Grade

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:



- Greenleaf Creek is on the 303(d) list of impaired water bodies for bugs
- In our assessment, bug assemblages were fair.
- Fair bug scores, along with good water chemistry and habitat, indicate previous impairments may be improving, but more samples are needed to remove Greenleaf Creek from the impaired water body list.

Holson Creek

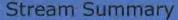
This leaflet provides an overview of the water quality of Holson Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Water Chemistry	Fish	Bugs	Habitat	Final	Grade
0.88	1	0.65	1	0.88	В

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:



- Holson Creek is on the 303(d) list of impaired water bodies for pH.
- •In our assessment, the bug assemblage was fair which may be impacted by low pH and high turbidity.
- Turbidity is impacted by sediment introduced to the stream from the watershed.
- BMPs that reduce erosion (e.g., cover crops), or catch sediment before entering the stream (e.g., riparian plantings) can help improve instream turbidity and potentially bug communities.
- Low pH may be associated with acid rain from upwind industrial exhaust or drainage from upstream industrial or mining activities.

Manard Bayou

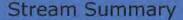
This leaflet provides an overview of the water quality of Manard Bayou The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Water Chemistry	Fish	Bugs	Habitat	Final	Grade
0.75	1	0.87	0.9	0.88	В

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:



- Manard Bayou is on the 303(d) list of impaired water bodies for bugs.
- Current bug community data indicates that the impairment may be improving, but more samples are needed to remove Manard Bayou from the impaired waterbody list.
- In our assessment nutrient concentrations were elevated, which may result from over-application of fertilizer and/or high densities of livestock in the watershed.
- Alternative water supplies, riparian planting, and riparian fencing, as well as nutrient management planning can all improve nutrients in streams.

Peacheater Creek

This leaflet provides an overview of the water quality of Peacheater Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Chemistry	0.98	0.77	Habitat	0.94	Grade
Water	Fish	Bugs	Habitat	Final	Grade

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:

- Peacheater Creek is not on the 303(d) list of impaired water bodies for any measurement
- •In our assessment the fish assemblage was good and the bug assemblage was fair. Water quality and habitat were both good.

Peavine Creek

Stream Summary

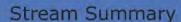
This leaflet provides an overview of the water quality of Peavine Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

0.94	0.92	0.82	1	0.92	Α
Water Chemistry	Fish	Bugs	Habitat	Final	Grade

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:



- Peavine Creek is not on the 303(d) list of impaired water bodies for any measurement
- •In our assessment the fish and bug assemblages were both good, which were supported by good water quality and habitat.

Sallisaw Creek

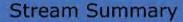
This leaflet provides an overview of the water quality of Sallisaw Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Water Chemistry	Fish	Bugs	Habitat	Final	Grade
0.88	0.8	0.94	1	0.9	Α

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:



- The portion of Sallisaw Creek that OCC monitors is not on the 303(d) list of impaired water bodies for any measurement
- •In our assessment both fish and bug assemblages were good, which was supported by good habitat and good water chemistry.

San Bois Creek

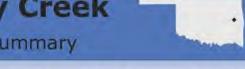
This leaflet provides an overview of the water quality of San Bois Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Chemistry 0.62	0.93	Dugs	Habitat	0.89	Grade
Water	Fish	Bugs	Habitat	Final	Grade

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:


- San Bois Creek is on the 303(d) list of impaired water bodies for sulfate.
- *In our assessment both fish and bug assemblages were good, despite fair water chemistry.
- *Nutrient and turbidity concentrations were elevated and dissolved oxygen (DO) was low.
- "Turbidity is impacted by sediment introduced to the stream from the watershed.
- Nutrients often enter streams attached to sediment but may also result from over-application of fertilizer and/or high densities of livestock in the watershed.
- *Low DO is often a result of excess nutrients in the stream and may result in the death of aquatic organisms.
- *BMPs that reduce erosion (e.g., cover crops) and catch sediment before entering the stream (e.g., riparian plantings) can help improve turbidity, nutrients, and potentially DO. Alternative water supplies, riparian fencing and nutrient management planning can all also improve nutrients in streams.

South Fork Dirty Creek

Stream Summary

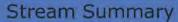
This leaflet provides an overview of the water quality of South Fork Dirty Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Water Chemistry	Fish	Bugs	Habitat	Final	Grade
0.81	0.93	0.87	0.8	0.85	В

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:



- South Fork Dirty Creek is on the 303(d) list of impaired water bodies for bugs, dissolved oxygen (DO) and salts (sulfate).
- Current bug community data indicates that the impairment may be improving, but more samples are needed to remove South Fork Dirty Creek from the impaired waterbody list.
- In our assessment, DO remained low, which is often caused by elevated nutrients, and may result in the death of aquatic organisms.
- Nutrients may enter streams as a result of over-application of fertilizer and/or high densities of livestock in the watershed.
- Alternative water supplies, riparian plantings, riparian fencing and nutrient management planning can all improve nutrients in streams, and potentially DO levels.

Steely Hollow Creek

This leaflet provides an overview of the water quality of Steely Hollow Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Chemistry	0.92	0.94		0.97	
Water	Fish	Bugs	Habitat	Final	Grade

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:

- Steely Hollow Creek is not on the 303(d) list of impaired waterbodies for any measurement.
- In our assessment, both fish and bug assemblages were in good condition, and were supported by good habitat and good water chemistry.

Sugar Loaf Creek

Stream Summary

This leaflet provides an overview of the water quality of Sugar Loaf Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Water Chemistry	Fish	Bugs	Habitat	Final	Grade
0.88	1	1	0.9	0.94	Α

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:



- Sugar Loaf Creek is on the 303(d) list of impaired waterbodies for dissolved oxygen (DO) and pH.
- In our assessment, both fish and bug assemblages were in good condition, and were supported by good habitat and generally good water chemistry, though nutrient concentrations were somewhat elevated and DO was low.
- DO impairments are often a result of excess nutrients in the stream and may result in the death of aquatic organisms.
- •Nutrients may enter streams as a result of over-application of fertilizer and/or high densities of livestock in the watershed.
- *Alternative water supplies, riparian plantings, riparian fencing and nutrient management planning can all improve nutrients in streams, and potentially DO levels.
- Low pH may be associated with acid rain from upwind industrial exhaust or drainage from upstream industrial or mining activities.

Telemay Hollow Creek

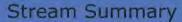
This leaflet provides an overview of the water quality of Telemay Hollow Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Water Chemistry	Fish	Bugs	Habitat	Final	Grade
0.81	0.59	0.58	0.9	0.72	C

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:



- Telemay Hollow is not on the 303(d) list of impaired water bodies for any metric.
- In our assessment, the fish and bug assemblages were poor despite good habitat and good water chemistry. The vast majority of the watershed is minimally altered by human activities.
- Though turbidity and salt concentrations were slightly elevated, it is possible that the poor biotic communities resulted from the relatively small size of the stream.
- *Small streams often support different biotic communities than larger streams.

Tyner Creek

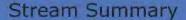
This leaflet provides an overview of the water quality of Tyner Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Water Chemistry	Fish	Bugs	Habitat	Final	Grade
1	0.92	0.79	1	0.93	Α

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:



- Tyner Creek is on the 303(d) list of impaired water bodies for dissolved oxygen (DO).
- •In our assessment, the fish assemblage was good and the bug assemblage was fair. Tyner creek had good water chemistry and good habitat.
- DO impairments are often a result of excess nutrients in the stream and may result in the death of aquatic organisms.
- Nutrients may enter streams as a result of over-application of fertilizer and/or high densities of livestock in the watershed.
- Alternative water supplies, riparian plantings, riparian fencing and nutrient management planning can all improve nutrients in streams, and potentially DO levels.

Vian Creek

This leaflet provides an overview of the water quality of Vian Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Chemistry	1 1511	Dugs	Παυτιατ	Tillai	Grade
Water	Fish	Bugs	Habitat	Final	Grade

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:

- •Vian Creek is not on the 303(d) list of impaired waterbodies for any measurement.
- •In our assessment, both fish and bug assemblages were in good condition, and were supported by good habitat and good water chemistry.

Battle Creek

This leaflet provides an overview of the water quality of Battle Creek. The data presented were collected between 2018 and 2020.

To evaluate the water quality in streams, Oklahoma Conservation Commission (OCC) collects biological (fish and bugs), chemical (nutrients, salts, and turbidity) and physical (habitat) data in streams across Oklahoma. Each of these measurements are compared to scores from nearby high-quality streams.

Water Chemistry	Fish	Bugs	Habitat	Final	Grade
0.81	0.98	0.9	1	0.92	Α

Each measurement score ranges from 0 (worst) to 1 (best). The water chemistry score is an average of nutrients, salts, pH, oxygen and turbidity measurements. The stream's final grade is an average of all measurements.

A stream's score is affected by activities in the upstream area that drains to the creek, or watershed. OCC interprets monitoring data in order to identify **voluntary** best-management practice (BMP) recommendations for the watershed that can help improve water quality:

- Battle Creek is not on the 303(d) list of impaired waterbodies for any measurement.
- In our assessment, both fish and bug assemblages were in good condition, but nutrient concentrations were high.
- Nutrients may result from over-application of fertilizer and/or high densities of livestock in the watershed.
- Alternative water supplies, riparian planting, and riparian fencing, as well as nutrient management planning can all improve nutrients in streams.

3) Blue Thumb Monitoring and Education

The OCC's Blue Thumb program supports volunteer scientists who monitor streams in the Compact Commission area. We currently support active monitoring at two stream sites in the Illinois River Watershed and two sites in the Poteau River Watershed. Volunteers collect observational and chemical data approximately monthly. Macroinvertebrate collections are completed twice a year. Habitat assessments and fish collections are completed once every four to five years. The

biological data (macroinvertebrates and fish) are submitted to the State of Oklahoma Integrated Report. The chemical data are used for education and screening purposes. Summaries of data reports written by volunteers about sites in the Compact Commission area can be found by clicking on monitoring sites on the interactive map at https://www.bluethumbok.com/volunteer-written-data-interpretations.html.

For several years, Blue Thumb has partnered with the Grand River Dam Authority (GRDA) to offer Riverology 101, a workshop for teachers focusing on the Illinois River and Grand Lake watersheds. In 2023, the workshop was updated to Riverology 201 to engage teachers who had already participated in a Riverology 101 workshop, as well as teachers new to the program. Riverology 201 was held in July of 2023.

Early in 2020, Blue Thumb began a partnership with the Illinois River Watershed Partnership (IRWP) to support monitoring and facilitate educational events in the Oklahoma portion of the Illinois River watershed. The sampling locations include 12 sites on tributaries to the Illinois River that were selected by the IRWP to be analogous to monitoring stations previously sampled on the Arkansas side of the state line. At each site in the Oklahoma portion of the watershed, Blue Thumb and IRWP staff complete a macroinvertebrate collection with onsite identification to order, water quality sampling and a rapid habitat assessment. Monitoring occurs three times a year. In 2022, IRWP monitored in the Arkansas portion of the watershed. In 2023, IRWP and BT are working together to monitor in the Oklahoma portion of the watershed.

Riverology 201 Workshop, July 2023

2023

Finally, in partnership with the Oklahoma Association of Conservation Districts and Friends of Blue Thumb and the OCC Soil Health Program, Blue Thumb is assisting conservation districts in supporting sustainable landscaping in suburban and urban areas. The Yard by Yard Program includes Cherokee County, Delaware County and LeFlore County Conservation Districts in the Compact Commission area. More information about Yard by Yard can be found at:

https://www.okconservation.org/yardbyyard and https://youtu.be/kuGgIS03GoI, as well as on Facebook under Yard by Yard: Community Resiliency Project.

4) Oklahoma/Arkansas Memorandum of Agreement

In November 2018, Oklahoma and Arkansas officials signed an agreement to continue working toward water quality improvement in the Illinois River Watershed, focusing on data and information sharing, monitoring and assessment, and implementation of strategies to continue nutrient reductions in the watershed. The OCC has been participating in agency coordination meetings to recruit stakeholders, agree upon a strategy and more fully develop a schedule to move this agreement forward. States continue to work on this agreement, with steps being taken to update watershed planning on both sides of the state line.

An important component of this agreement is to cooperate with Arkansas and the Cherokee Nation to develop a watershed implementation plan (WIP) for the watershed.

One component of this WIP is for the states to update their NPS WBPs for the watershed. To support this update, Oklahoma has contracted with Texas A&M University, developers of the Soil and Water Assessment Tool (SWAT) model, to develop a SWAT model for the watershed. This SWAT model will be housed in the Hydrologic and Water Quality System (HAWQs) online water quality system to support updates, transparency, data sharing, and use of the ultimate tool. Texas A&M will complete a hydrologically and chemically calibrated SWAT model for the Illinois River which utilizes the same sub-basin and calibration points utilized in the EPA Hydrological Simulation Program- Fortran (HSPF) model. The WIP subcommittee have agreed to a timeline to follow up model development in Arkansas and Oklahoma with public meetings beginning in Fall of 2022 to finalize updates to the WBPs. Public meetings supported by the Cherokee Nation, Arkansas Department of Agriculture Division of Natural Resources, Oklahoma Conservation Commission and partners were held in 2023 and included a stakeholder discussion of best management practices for both urban and rural environments, as well as modeler reviews of Oklahoma and Arkansas SWAT preliminary results.

5. Hydrologic and Water Quality Systems (HAWQS) Modeling for Oklahoma

HAWQS is a web-based, interactive water quantity and quality model that was originally developed for EPA by Texas A&M. HAWQS is currently available nationwide, calibrated to the HUC 8 watershed level (https://www.epa.gov/waterdata/hawqs-hydrologic-and-water-quality-system and https://hawqs.tamu.edu/#/). However, since many efforts in watershed and project planning are done at the smaller HUC 12 watershed scale, Texas A&M has been working with partnering states to further develop HAWQS to that finer topographic scale. Therefore, also in partnership with OSU and Texas A&M, the OCC is developing a statewide HAWQS model for Oklahoma, calibrated hydrologically and chemically to the HUC12 level, statewide. Therefore, in addition to the Illinois River Watershed SWAT model, baseline SWAT models will be available for all HUC 12 watersheds in the compact commission area. Anticipated completion of this product is October 2023.

In the compact commission area and in addition to the baseline SWAT model for the Illinois River described earlier which will tie into the EPA model, this effort will also produce a baseline SWAT model for the Wister watershed that will tie into a lake model developed for the Poteau Valley Improvement Authority. These efforts will assist with further developments of the Wister Lake Watershed Based Plan.

The OK HAWQS system will be updated to include simplified simulations of conservation practice installation scenarios. This automation should help ensure that the use of SWAT to predict load reductions resulting from theoretical conservation practice installations will be standardized.

The added benefit of the HAWQs system is that the model is stored in the cloud and freely accessible online. Updated climate, soils, land use, and even water quality data

automatically linked to the baseline models developed through the system. These data updates, sharing and online storage will make it much simpler to update and re-use historically developed watershed models to evaluate changes over time in watersheds and will support additional watershed plan development statewide.

6) <u>Neighborhood Solutions to Natural Resource Concerns Regional Conservation</u> Partnership Program (RCPP): Neighbors Helping Neighbors Project

The OCC, GRDA, Cherokee Nation, and poultry integrators are partnering with the Natural Resources Conservation Service (NRCS) to help address some challenges created by the recent evolutions of the poultry industry in eastern Oklahoma. OCC and GRDA received an RCPP grant from NRCS to work with poultry growers and their neighbors to design and install conservation practice systems and other solutions to noise, dust, odor, and water quality concerns voiced by neighbors of poultry producers. This program is active along the entire eastern border of Oklahoma (Figure 3) and includes most of the compact commission area in Oklahoma. This program is supported by at least \$2,010,000 in funding from the NRCS, OCC (state and EPA CWA §319 funding), GRDA, the Cherokee Nation, and poultry integrators (Simmons, Tysons, and Okay Foods). The intent of the program is to convene small working groups of growers and their neighbors to identify, clarify, and prioritize challenges of living next door to a large animal production operation. Experts from NRCS, OCC, GRDA, Cooperative Extension, the Oklahoma Water Resources Board, Oklahoma Department of Agriculture, Food and Forestry, county commissioners, and other available specialties and programs will then consider the challenges and recommend potential solutions to be funded using a combination of available state and federal resources. Virtual meetings were held in Fall of 2021 and site visits for potential cooperators began in 2022. The program had initial signups for enrollment in Fall of 2023. Contracts and conservation planning are currently underway on at least one demonstration farm in LeFlore County which will feature rainwater harvesting to reduce rural water peak demand, improved mortality management, and field borders and buffers. More information about the Neighbors Project can be found at: https://conservation.ok.gov/neighbors-helping-neighbors/.

7) Poultry Litter Transfer Program

The OCC also renewed a poultry litter transfer program in fall of 2021 to support litter transfer from poultry producing watersheds along the eastern Oklahoma border into non-nutrient limited watersheds further west in Oklahoma. This program focuses at least \$300,000 in state funding to reduce water quality impacts in high priority watersheds in eastern Oklahoma including portions of the compact commission area. To date, 4,747 tons of litter have been moved through the program, utilizing \$36,739 worth of program funding. Litter has been moved primarily from Leflore and Delaware counties, into non-nutrient impaired watersheds in Ottawa, Johnston, and Muskogee counties.

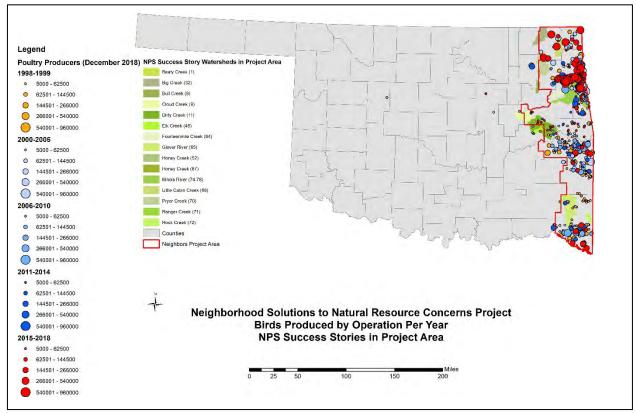


Figure 4. Neighbors Helping Neighbors Project Area.

8) Soil Health Education Program

The OCC partners with NRCS, the Nature Conservancy, the Oklahoma Association of Conservation Districts, the Noble Research Institute, tribes, state and federal agencies, universities, and others to encourage landowners to adopt management strategies to improve soil health. These programs include field days and seminars on grazing management, plant ID, cover crops, and water infiltration; soil health monitoring and assessments associated with various management strategies using a mobile application (WORMS); conservation planning and mentoring to support landowners adopting soil health practices; and conservation practice installation to support soil health.

Recent soil health activities in the Compact Commission area include:

- Soil Health Education for Kids at the Latimer County Fair in Wilburton, OK;
- Producer consultations to design/support soil health conservation practice adoption including soil health assessment and conservation planning in LeFlore county;
- Soil Health Field Day in Cherokee County to focus on Oklahoma Association of Conservation District's Conservation and Agriculture Reach Everybody (CARE) project Champion. (https://www.okconservation.org/care);
- Plant Identification Field day with the Muskogee-Creek Nation to focus on value of non-grass species for livestock forage and soil health improvement

- Presentation at Association of Conservation Districts Area V Meeting;
- Soil Health Presentation at the Green Country Kiko Goat Association Meeting and Sale in Sallisaw, OK and
- OCC's soil health team completed the first two of four economic case studies on the benefits of soil health (https://conservation.ok.gov/wp-content/uploads/2021/10/Herriman-Case-Study FINAL 072222 WEB-Version-1.pdf
 and https://conservation.ok.gov/wp-content/uploads/2021/10/Nault-Case-Study OCC AFT Final 072622 WEB-VERSION updated-MG-number.pdf).

9) Locally-Led Cost-Share Program

Since 1998, the OCC has supported conservation districts and local landowners' efforts to restore, conserve and protect natural resources through the Locally-Led Cost-Share Program (LLCP). The program provides an annual allocation to the nine conservation districts in the compact commission area to support conservation practice installation. Eligible producers are enrolled in the program based on priorities and conservation practice focuses established by the local conservation district. Conservation planning is generally designed and completed by the NRCS, and once practices have been complete and certified as complying with NRCS or other appropriate standards, the conservation district reimburses the cooperator for a portion of the cost of installation (generally between 50 – 75% of actual costs). Conservation Districts, the OCC, and landowners have installed at least \$5,725,743 worth of conservation practices since 1998 with \$3,152,210 funded by districts and the OCC and \$2,573,533 funded by landowners in the Compact Commission area. These conservation practices include brush management, cover crops, fencing, grade stabilization structures, grassed waterways, heavy use protection, herbaceous weed control, nutrient management, channel obstruction removal, pasture and hayland planting, pest management, livestock watering pipeline, ponds and pond cleanouts, livestock watering facilities and livestock wells.

Between September 2022 and August 2023, landowners installed \$1,711,929 worth of conservation practices in the compact area funded with \$1,169,828 of OCC/district funds and \$542,101 landowner funds. These installations included 245 acres of brush management, 213 acres of cover crop, 19,084 linear feet of fencing, 18 heavy use protection areas, 378 acres of herbaceous weed control, 70 acres of pasture and hayland planting, nine pasture taps, 1,241 linear feet of pipeline, ten ponds, 153 pond cleanouts, 16 pumping plants, 28 watering facilities, and 19 livestock wells.

Figure 5. Examples of conservation practices installed in the compact commission area in 2022-2023 include cross fencing (upper left), pond (upper right), livestock watering and heavy use area (lower left), and brush control (lower right).

10) Upstream Flood Control Structure Program

The OCC partners with conservation districts, NRCS, and others to maintain 2,107 upstream flood control dams constructed across Oklahoma through the USDA NRCS Watershed and Flood Prevention Operations Program. This program saves an estimated \$96 million in damages associated with flooding by protecting 2,756 county and highway bridges, flood reduction for 41,744 farms and ranches, trapping 19 million tons of sediment, and creating or enhancing 90,979 acres of wetlands each year. Forty-two of these structures were constructed as multipurpose structures, which provide municipal and rural waters supplies and recreation areas.

Fifty-five of these structures are in the compact commission area, including 7 high hazard, 5 significant hazard, and 43 low hazard structures constructed along Sallisaw, Fourche Maline, Caston, and Scraper Hollow creeks (Figure 5). OCC assisted the Adair, Sequoyah, Latimer, and LeFlore county conservation districts throughout 2022 and 2023 with administrative, technical and land rights issues for both rehabilitation and operation and maintenance. Six structures in the compact commission area (Sallisaw 33 and

Sequoyah 36, Fourche Maline 7m, Caston Mountain I and 2, and Scraper Hollow 2 are currently in the planning phases for rehabilitation projects.

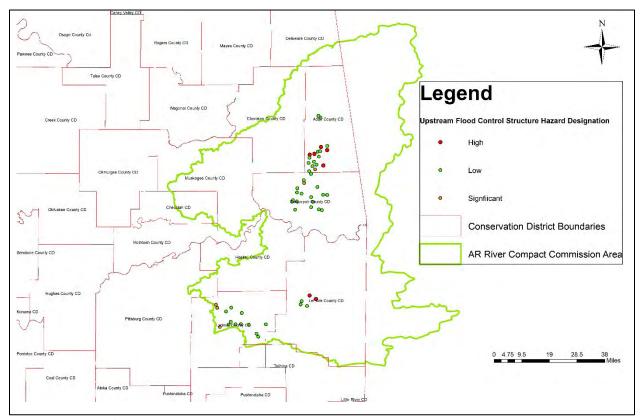


Figure 6. OCC/Conservation District Maintained Upstream Flood Control Structures in Compact Commission Area.

11) OCC Land Management Program

The OCC Land Management Division is dedicated to assisting landowners across Oklahoma with resource concerns that have an impact on the soil, water, and safety. Division work is focused in three major areas including land restoration, unpaved roads, and conservation and nutrient management planning. This division has roots in OCC's Abandoned Mine Land Program, and the purpose of the land management program is to reclaim abandoned mine lands in Oklahoma by contracting with private entities to perform reclamation work. The Division has completed reclamation work on 63 projects in the Compact Commission Area, which total 2,128 acres of reclaimed land primarily in McIntosh, Sequoyah, Latimer, LeFlore, and Haskell counties. (Figure 7).

The division also manages the State's Unpaved Roads Program. The goal of the unpaved roads program is to fund safe, efficient, and environmentally sound projects for the maintenance of unpaved roads that have been identified as potential contributors to sediment runoff in Oklahoma streams and to provide training on techniques to maintain these roads to minimize negative impacts on air and water quality.

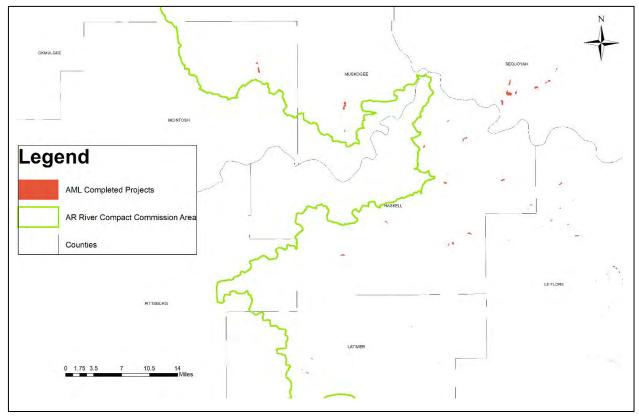


Figure 7. Abandoned mine land projects completed in the compact commission area.

The division assists landowners and conservation districts by providing conservation and nutrient management assistance to all 84 conservation districts to address private landowner concerns related to natural resource concerns. OCC has employed eight new planners (5 conservation planners; 3 nutrient management planners) to provide service to Oklahoma's landowners. These staff develop conservation plans that fund conservation practices through the State Cost-Share Program and provide nutrient management plans to poultry growers. There is one nutrient management planner and one conservation planner (Areas III & V) working with the districts in the Compact Commission Area.

The division is also working to inventory and assess abandoned hardrock (or non-coal) mines across the state in order to prioritize reclamation work. Inventories have been completed in all of the Compact Commission counties. Finally, the Division continues to oversee post construction activities such as vegetation establishment and site monitoring on abandoned coal mine projects including

12) New Spiro Lake and Unpaved Roads Program

OCC Program Activities Report 8/31/2023 Page 41 of 41

OCC has been supporting the town of Spiro since at least 2015 with water quality monitoring in their lake and watershed. The intent of this monitoring is to support long- term efforts to improve and protect water quality in New Spiro Lake. In addition to developing a WBP for the watershed, the OCC plans to complete a prioritization assessment of unpaved roads in the watershed along with a demonstration project to address a significant long-term erosive site on the lakeside road.

The state legislature allocated \$400,000 in 2022 to begin a pilot grant program to assist county commissioners with unpaved roads erosion problems. Administered by the Land Management Division, a workshop in September 2022 offered training for county commissioners in Lincoln County about alternative approaches to eroding areas. Additional workshops were held in 2023, and site in Lincoln, Pawnee, Canadian, Pottawatomie, Pontotoc, Logan, Cherokee, and Choctaw counties were repaired through cost-share grants to local county commissioners. The program provided \$447, 563 in funds toward \$1,076,228 worth of projects in 2022 and 2023. The Oklahoma legislature awarded an additional \$600,000 worth of funds to total \$1 million for the program, statewide in state FY 24. In addition, OCC will utilize additional funds complete a training and demonstration project in the New Spiro Watershed with LeFlore County Commissioners in 2024.